Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli
by
Zhao Huiwei
, Shuang-Yan, Tang
, Ji Xiangyu
, Zhu, Hua
, Zhu, Kun
, Lou Chunbo
in
Acid production
/ Batch culture
/ Biomass
/ Biosynthesis
/ Chromosomes
/ CRISPR
/ E coli
/ Escherichia coli
/ Fatty acids
/ Fermentation
/ Gene expression
/ Genomes
/ Metabolic flux
/ Metabolism
/ Pharmaceuticals
/ Stability
/ Switching
/ Thioesterase
/ Triclosan
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli
by
Zhao Huiwei
, Shuang-Yan, Tang
, Ji Xiangyu
, Zhu, Hua
, Zhu, Kun
, Lou Chunbo
in
Acid production
/ Batch culture
/ Biomass
/ Biosynthesis
/ Chromosomes
/ CRISPR
/ E coli
/ Escherichia coli
/ Fatty acids
/ Fermentation
/ Gene expression
/ Genomes
/ Metabolic flux
/ Metabolism
/ Pharmaceuticals
/ Stability
/ Switching
/ Thioesterase
/ Triclosan
2020
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli
by
Zhao Huiwei
, Shuang-Yan, Tang
, Ji Xiangyu
, Zhu, Hua
, Zhu, Kun
, Lou Chunbo
in
Acid production
/ Batch culture
/ Biomass
/ Biosynthesis
/ Chromosomes
/ CRISPR
/ E coli
/ Escherichia coli
/ Fatty acids
/ Fermentation
/ Gene expression
/ Genomes
/ Metabolic flux
/ Metabolism
/ Pharmaceuticals
/ Stability
/ Switching
/ Thioesterase
/ Triclosan
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli
Journal Article
CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli
2020
Request Book From Autostore
and Choose the Collection Method
Overview
Butenoic acid is a short-chain unsaturated fatty acid and important precursor for pharmaceutical and other applications. Heterologous thioesterases are able to convert a fatty acid biosynthesis intermediate in Escherichia coli to butenoic acid. In order to acquire high titer and yield of the product, dynamically switching the metabolic flux from fatty acid biosynthesis pathway to butenoic acid is critical after achieving enough cell mass of the host. A previous developed switch for butenoic acid fermentation is based on triclosan molecule as the FabI inhibitor in the fatty acid biosynthesis cycle. However, triclosan is toxic to human, which may limit its pharmaceutical application. Alternatively, we here purposed a nontoxic switch of carbon flux by harnessing recently developed CRISPR interference (CRISPRi) approach. In our work, we constructed a CRISPRi/dCpf1-mediated dynamic metabolic switch to separate the host growth and production phase via switching the expression of the fabI gene in fatty acid biosynthesis pathway. After optimizing the programmable targets, the CRISPRi-based switch boosted the titer of butenoic acid by 6-fold (1.41 g/L) in fed-batch fermentation. Our work supported that the CRISPRi/dCpf1 switch could replace triclosan-based switch as a nontoxic switch for butenoic acid production, and outcompeted the later switch in the biomass accumulation of the host cell. Moreover, the CRISPRi/dCpf1 system was integrated into the chromosome of the host to improve its genetic stability for long-term fermentation and other applications.Key Points• A programmable metabolic switch was developed to replace the toxic chemical switch to separate the growth phase and production phase of the butenoic acid.• The programmable CRISPRi/dCpf1 switch was efficiently and stably integrated into the host genome to increase their genetic stability during fermentation.• The optimized metabolic switch simultaneously increased the host biomass and butenoic acid titer, and solved the paradox of the competition between growth and production.
This website uses cookies to ensure you get the best experience on our website.