MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mapping the learning curves of deep learning networks
Mapping the learning curves of deep learning networks
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mapping the learning curves of deep learning networks
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mapping the learning curves of deep learning networks
Mapping the learning curves of deep learning networks

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mapping the learning curves of deep learning networks
Mapping the learning curves of deep learning networks
Journal Article

Mapping the learning curves of deep learning networks

2025
Request Book From Autostore and Choose the Collection Method
Overview
There is an important challenge in systematically interpreting the internal representations of deep neural networks (DNNs). Existing techniques are often less effective for non-tabular tasks, or they primarily focus on qualitative, ad-hoc interpretations of models. In response, this study introduces a cognitive science-inspired, multi-dimensional quantification and visualization approach that captures two temporal dimensions of model learning: the “information-processing trajectory” and the “developmental trajectory.” The former represents the influence of incoming signals on an agent’s decision-making, while the latter conceptualizes the gradual improvement in an agent’s performance throughout its lifespan. Tracking the learning curves of DNNs enables researchers to explicitly identify the model appropriateness of a given task, examine the properties of the underlying input signals, and assess the model’s alignment (or lack thereof) with human learning experiences. To illustrate this method, we conducted 750 runs of simulations on two temporal tasks: gesture detection and sentence classification, showcasing its applicability across different types of deep learning tasks. Using four descriptive metrics to quantify the mapped learning curves— start , end - start , max , t max —, we identified significant differences in learning patterns based on data sources and class distinctions (all p’s  <  .0001), the prominent role of spatial semantics in gesture learning, and larger information gains in language learning. We highlight three key insights gained from mapping learning curves: non-monotonic progress , pairwise comparisons , and domain distinctions . We reflect on the theoretical implications of this method for cognitive processing, language models and representations from multiple modalities.