Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
by
Flanagan, W
, Ternes, C. A
, Kvasnicka, J
, Goswami, S
, Iliescu, A. M
, Da Motta, H
, Marshak, M
, Dwyer, D
, Carroll, T
, Bostan, N
, Edmunds, D
, Méndez, D. P
, Mendez, H
, Weinstein, A
, Bezerra, T. S
, Laundrie, A
, Mendez, P
, Saakyan, R
, Barkhouse, W
, Gendotti, A
, Rappoldi, A
, David, C
, Manrique Plata, M
, Bourgeois, C
, Karyotakis, Y
, De Mello Neto, J. R
, Aguilar, J
, eman, W
, Heavey, A
, Chong, P. S
, Gamble, T
, Hoff, J
, Poling, R
, Ioannisian, A
, Garcia-Gamez, D
, Novella, P
, Onel, Y
, Uchida, M. A
, Yandel, E
, Ling, J
, Gandhi, R
, Pallavicini, M
, Soderberg, M
, Balasubramanian, S
, De Bonis, I
, Wresilo, K
, Cavallaro, G
, Pawloski, G
, Hourlier, A
, Decowski, M
, Guarino, V
, Chappell, A
, Wolcott, J
, Kakorin, I
, Pozzato, M
, Gallego-Ros, A
, Sgalaberna, D
, Back, A
, Butorov, I
, Chavarry Neyra, M
, Back, H
, White, A
, Carceller, J
, Motuk, E
, Dharmapalan, R
, Patrick, C
, Riccobene, G
, Manly, S
, Ereditato, A
, Ankowski, A
, Guthikonda, K
, Whittington, D
, Sotnikov, A
, Castaño Forero, J. F
, Schmitz, D
, Rochester, L
, Pia, V
, Abi, B
, Rincón, E. V
, Zennamo, J
, Hartnett, T
, Lawrence, A
, Pascoli, S
, Thompson, J. L
, Lee, C
, Furic, I. K
, Maloney, J. A
, Petti, R
, Vicenzi, M
, Michna, G
, Lang, K
, Dyshkant, A
, Ba
in
Algorithms
/ Argon
/ Artificial neural networks
/ Charged particles
/ Neural networks
/ Neutrinos
/ Particle physics
/ Radiation counters
2022
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
by
Flanagan, W
, Ternes, C. A
, Kvasnicka, J
, Goswami, S
, Iliescu, A. M
, Da Motta, H
, Marshak, M
, Dwyer, D
, Carroll, T
, Bostan, N
, Edmunds, D
, Méndez, D. P
, Mendez, H
, Weinstein, A
, Bezerra, T. S
, Laundrie, A
, Mendez, P
, Saakyan, R
, Barkhouse, W
, Gendotti, A
, Rappoldi, A
, David, C
, Manrique Plata, M
, Bourgeois, C
, Karyotakis, Y
, De Mello Neto, J. R
, Aguilar, J
, eman, W
, Heavey, A
, Chong, P. S
, Gamble, T
, Hoff, J
, Poling, R
, Ioannisian, A
, Garcia-Gamez, D
, Novella, P
, Onel, Y
, Uchida, M. A
, Yandel, E
, Ling, J
, Gandhi, R
, Pallavicini, M
, Soderberg, M
, Balasubramanian, S
, De Bonis, I
, Wresilo, K
, Cavallaro, G
, Pawloski, G
, Hourlier, A
, Decowski, M
, Guarino, V
, Chappell, A
, Wolcott, J
, Kakorin, I
, Pozzato, M
, Gallego-Ros, A
, Sgalaberna, D
, Back, A
, Butorov, I
, Chavarry Neyra, M
, Back, H
, White, A
, Carceller, J
, Motuk, E
, Dharmapalan, R
, Patrick, C
, Riccobene, G
, Manly, S
, Ereditato, A
, Ankowski, A
, Guthikonda, K
, Whittington, D
, Sotnikov, A
, Castaño Forero, J. F
, Schmitz, D
, Rochester, L
, Pia, V
, Abi, B
, Rincón, E. V
, Zennamo, J
, Hartnett, T
, Lawrence, A
, Pascoli, S
, Thompson, J. L
, Lee, C
, Furic, I. K
, Maloney, J. A
, Petti, R
, Vicenzi, M
, Michna, G
, Lang, K
, Dyshkant, A
, Ba
in
Algorithms
/ Argon
/ Artificial neural networks
/ Charged particles
/ Neural networks
/ Neutrinos
/ Particle physics
/ Radiation counters
2022
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
by
Flanagan, W
, Ternes, C. A
, Kvasnicka, J
, Goswami, S
, Iliescu, A. M
, Da Motta, H
, Marshak, M
, Dwyer, D
, Carroll, T
, Bostan, N
, Edmunds, D
, Méndez, D. P
, Mendez, H
, Weinstein, A
, Bezerra, T. S
, Laundrie, A
, Mendez, P
, Saakyan, R
, Barkhouse, W
, Gendotti, A
, Rappoldi, A
, David, C
, Manrique Plata, M
, Bourgeois, C
, Karyotakis, Y
, De Mello Neto, J. R
, Aguilar, J
, eman, W
, Heavey, A
, Chong, P. S
, Gamble, T
, Hoff, J
, Poling, R
, Ioannisian, A
, Garcia-Gamez, D
, Novella, P
, Onel, Y
, Uchida, M. A
, Yandel, E
, Ling, J
, Gandhi, R
, Pallavicini, M
, Soderberg, M
, Balasubramanian, S
, De Bonis, I
, Wresilo, K
, Cavallaro, G
, Pawloski, G
, Hourlier, A
, Decowski, M
, Guarino, V
, Chappell, A
, Wolcott, J
, Kakorin, I
, Pozzato, M
, Gallego-Ros, A
, Sgalaberna, D
, Back, A
, Butorov, I
, Chavarry Neyra, M
, Back, H
, White, A
, Carceller, J
, Motuk, E
, Dharmapalan, R
, Patrick, C
, Riccobene, G
, Manly, S
, Ereditato, A
, Ankowski, A
, Guthikonda, K
, Whittington, D
, Sotnikov, A
, Castaño Forero, J. F
, Schmitz, D
, Rochester, L
, Pia, V
, Abi, B
, Rincón, E. V
, Zennamo, J
, Hartnett, T
, Lawrence, A
, Pascoli, S
, Thompson, J. L
, Lee, C
, Furic, I. K
, Maloney, J. A
, Petti, R
, Vicenzi, M
, Michna, G
, Lang, K
, Dyshkant, A
, Ba
in
Algorithms
/ Argon
/ Artificial neural networks
/ Charged particles
/ Neural networks
/ Neutrinos
/ Particle physics
/ Radiation counters
2022
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
Journal Article
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
2022
Request Book From Autostore
and Choose the Collection Method
Overview
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.
Publisher
Springer Nature B.V
Subject
This website uses cookies to ensure you get the best experience on our website.