MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Immunoregulatory functions of mTOR inhibition
Immunoregulatory functions of mTOR inhibition
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Immunoregulatory functions of mTOR inhibition
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Immunoregulatory functions of mTOR inhibition
Immunoregulatory functions of mTOR inhibition

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Immunoregulatory functions of mTOR inhibition
Immunoregulatory functions of mTOR inhibition
Journal Article

Immunoregulatory functions of mTOR inhibition

2009
Request Book From Autostore and Choose the Collection Method
Overview
Key Points The atypical serine/threonine protein kinase mammalian target of rapamycin (mTOR) has an important role in the modulation of both innate and adaptive immune responses. A complex formed between the immunosuppressive drug rapamycin and the immunophilin FK506-binding protein 1A, 12 kDA (FKBP12) inhibits mTOR kinase activity. mTOR functions in at least two multi-protein complexes: mTOR complex 1 (mTORC1) and mTORC2. mTOR in mTORC1 is highly sensitive to inhibition by rapamycin, whereas mTOR in mTORC2 is resistant to rapamycin. mTORC1 regulates cell growth downstream of phosphoinositide 3-kinase–AKT signalling, in which active mTORC1 phosphorylates S6 kinase (S6K1) and the eukaryotic translation initiation factor-binding protein 1 (EIF4EBP1). Both of these activities promote mRNA translation and cell growth. Rapamycin exerts many effects on the differentiation and function of professional antigen-presenting cells (APCs). mTOR inhibition by rapamycin impedes antigen uptake and can modulate antigen presentation by dendritic cells (DCs); its differential effects on cytokine production and chemokine receptor expression by DCs regulate interactions between innate and adaptive immune cells. Recent findings have shed light on previously unappreciated effects of mTOR inhibition on T cells. Rapamycin induces thymic involution, whereas the ontogeny of naturally occurring regulatory T (T Reg ) cells seems to be less affected. During conventional T cell activation, rapamycin-mediated mTOR inhibition blocks cell cycle progression and can sequester activated T cells in secondary lymphoid tissues. By contrast, rapamycin causes an increase in the frequency of FOXP3 (forkhead box P3) + T cells, reflecting both the ability of T Reg cells to proliferate in the presence of rapamycin and the promotion of FOXP3 expression in peripheral T cells that are then converted into modulators of immune reactivity. mTOR inhibition is a promising therapeutic strategy to prevent rejection in transplantation and for autoimmune disease. Differential effects of rapamycin on T cells and T Reg cells (both naturally occurring and inducible) favour its ability to promote tolerance in tolerance-enhancing protocols. In addition, adoptively transferred rapamycin-conditioned APCs inhibit organ allograft rejection and graft-versus-host disease following haematopoietic cell transplantation. Ongoing and future areas of enquiry, which could prove fruitful, include distinguishing the role of mTORC1 and mTORC2 in the regulation of immune responses and tolerance, investigating the role of the mTOR–survivin–aurora B complex in T cell activation and ascertaining the mechanisms that determine T Reg cell resistance to rapamycin and mTOR-mediated regulation of FOXP3 expression, as well as their relevance to therapy. Angus Thomson and colleagues describe the consequences of mammalian target of rapamycin (mTOR) inhibition by rapamycin on dendritic cells, effector T cells and regulatory T cells. These effects make mTOR inhibition a promising immunosuppressive, but tolerance-promoting, therapeutic strategy. The potent immunosuppressive action of rapamycin is commonly ascribed to inhibition of growth factor-induced T cell proliferation. However, it is now evident that the serine/threonine protein kinase mammalian target of rapamycin (mTOR) has an important role in the modulation of both innate and adaptive immune responses. mTOR regulates diverse functions of professional antigen-presenting cells, such as dendritic cells (DCs), and has important roles in the activation of effector T cells and the function and proliferation of regulatory T cells. In this Review, we discuss our current understanding of the mTOR pathway and the consequences of mTOR inhibition, both in DCs and T cells, including new data on the regulation of forkhead box P3 expression.