MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Soil stabilization linked to plant diversity and environmental context in coastal wetlands
Soil stabilization linked to plant diversity and environmental context in coastal wetlands
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Soil stabilization linked to plant diversity and environmental context in coastal wetlands
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Soil stabilization linked to plant diversity and environmental context in coastal wetlands
Soil stabilization linked to plant diversity and environmental context in coastal wetlands

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Soil stabilization linked to plant diversity and environmental context in coastal wetlands
Soil stabilization linked to plant diversity and environmental context in coastal wetlands
Journal Article

Soil stabilization linked to plant diversity and environmental context in coastal wetlands

2016
Request Book From Autostore and Choose the Collection Method
Overview
BACKGROUND: Plants play a pivotal role in soil stabilization, with above‐ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock‐on positive effects for soil stability, but these relationships are yet to be disentangled. QUESTION: We hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity. METHODS: We tested this hypothesis in salt marsh grasslands, dynamic ecosystems with a key role in flood protection. Using step‐wise regression, the influences of biotic (e.g. plant diversity) and abiotic variables on root biomass and soil stability were determined for salt marshes with two contrasting soil types: erosion‐resistant clay (Essex, southeast UK) and erosion‐prone sand (Morecambe Bay, northwest UK). A total of 132 (30‐cm depth) cores of natural marsh were extracted and exposed to lateral erosion by water in a re‐circulating flume. RESULTS: Soil erosion rates fell with increased plant species richness (R² = 0.55), when richness was modelled as a single explanatory variable, but was more important in erosion‐prone (R² = 0.44) than erosion‐resistant (R² = 0.18) regions. As plant species richness increased from two to nine species·m⁻², the coefficient of variation in soil erosion rate decreased significantly (R² = 0.92). Plant species richness was a significant predictor of root biomass (R² = 0.22). Step‐wise regression showed that five key variables accounted for 80% of variation in soil erosion rate across regions. Clay‐silt fraction and soil carbon stock were linked to lower rates, contributing 24% and 31%, respectively, to variation in erosion rate. In regional analysis, abiotic factors declined in importance, with root biomass explaining 25% of variation. Plant diversity explained 12% of variation in the erosion‐prone sandy region. CONCLUSION: Our study indicates that soil stabilization and root biomass are positively associated with plant diversity. Diversity effects are more pronounced in biogeographical contexts where soils are erosion‐prone (sandy, low organic content), suggesting that the pervasive influence of biodiversity on environmental processes also applies to the ecosystem service of erosion protection.