MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation
Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation
Journal Article

Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation

2021
Request Book From Autostore and Choose the Collection Method
Overview
Studying the function of common genetic variants in primary human tissues and during development is challenging. To address this, we use an efficient multiplexing strategy to differentiate 215 human induced pluripotent stem cell (iPSC) lines toward a midbrain neural fate, including dopaminergic neurons, and use single-cell RNA sequencing (scRNA-seq) to profile over 1 million cells across three differentiation time points. The proportion of neurons produced by each cell line is highly reproducible and is predictable by robust molecular markers expressed in pluripotent cells. Expression quantitative trait loci (eQTL) were characterized at different stages of neuronal development and in response to rotenone-induced oxidative stress. Of these, 1,284 eQTL colocalize with known neurological trait risk loci, and 46% are not found in the Genotype–Tissue Expression (GTEx) catalog. Our study illustrates how coupling scRNA-seq with long-term iPSC differentiation enables mechanistic studies of human trait-associated genetic variants in otherwise inaccessible cell states. Single-cell RNA-seq analysis of iPSC neural differentiation identifies markers that predict line-to-line differences in cell fate potential and eQTLs that are specific to different stages of differentiation and that overlap with GWAS risk variants for neurological traits.