MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning
Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning
Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning
Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning
Journal Article

Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning

2023
Request Book From Autostore and Choose the Collection Method
Overview
Background Nontuberculous mycobacterial lung disease (NTM-LD) and Mycobacterium tuberculosis lung disease (MTB-LD) have similar clinical characteristics. Therefore, NTM-LD is sometimes incorrectly diagnosed with MTB-LD and treated incorrectly. To solve these difficulties, we aimed to distinguish the two diseases in chest X-ray images using deep learning technology, which has been used in various fields recently. Methods We retrospectively collected chest X-ray images from 3314 patients infected with Mycobacterium tuberculosis (MTB) or nontuberculosis mycobacterium (NTM). After selecting the data according to the diagnostic criteria, various experiments were conducted to create the optimal deep learning model. A performance comparison was performed with the radiologist. Additionally, the model performance was verified using newly collected MTB-LD and NTM-LD patient data. Results Among the implemented deep learning models, the ensemble model combining EfficientNet B4 and ResNet 50 performed the best in the test data. Also, the ensemble model outperformed the radiologist on all evaluation metrics. In addition, the accuracy of the ensemble model was 0.85 for MTB-LD and 0.78 for NTM-LD on an additional validation dataset consisting of newly collected patients. Conclusions In previous studies, it was known that it was difficult to distinguish between MTB-LD and NTM-LD in chest X-ray images, but we have successfully distinguished the two diseases using deep learning methods. This study has the potential to aid clinical decisions if the two diseases need to be differentiated.