MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage
Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage
Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage
Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage
Journal Article

Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage

2020
Request Book From Autostore and Choose the Collection Method
Overview
Interleukin 17 (IL-17) and its main producer, T cell receptor γδ cells, have neurotoxic effects in the pathogenesis of intracerebral hemorrhage (ICH), aggravating brain injuries. To investigate the correlation between IL-17 and ICH, we dynamically screened serum IL-17 concentrations using enzyme-linked immunosorbent assay and explored the clinical values of IL-17 in ICH patients. There was a significant negative correlation between serum IL-17 level and neurological recovery status in ICH patients (r = -0.498, P < 0.01). To study the neurotoxic role of IL-17, C57BL/6 mice were used to establish an ICH model by injecting autologous blood into the caudate nucleus. Subsequently, the mice were treated with mouse neural stem cells (NSCs) and/or IL-17 neutralizing antibody for 72 hours. Flow cytometry, brain water content detection, Nissl staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling results indicated that NSC transplantation significantly reduced IL-17 expression in peri-hematoma tissue, but there was no difference in T cell receptor γδ cells. Compared with the ICH group, there were fewer apoptotic bodies and more Nissl bodies in the ICH + NSC group and the ICH + NSC + IL-17 group. To investigate the potential effect of IL-17 on directional differentiation of NSCs, we cultured mouse NSCs (NE-4C) alone or co-cultured them with T cell receptor γδ cells, which were isolated from mouse peripheral blood mononuclear cells, for 7 days. The results of western blot assays revealed that IL-17 secreted by T cell receptor γδ cells reduced the differentiation of NSCs into astrocytes and neurons, while IL-17 neutralization relieved the inhibition of directional differentiation into astrocytes rather than neurons. In conclusion, serum IL-17 levels were elevated in the early stage of ICH and were negatively correlated with outcome in ICH patients. Animal experiments and cytological investigations therefore demonstrated that IL-17 probably has neurotoxic roles in ICH because of its inhibitory effects on the directional differentiation of NSCs. The application of IL-17 neutralizing antibody may promote the directional differentiation of NSCs into astrocytes. This study was approved by the Clinical Research Ethics Committee of Anhui Medical University of China (For human study: Approval No. 20170135) in December 2016. All animal handling and experimentation were reviewed and approved by the Institutional Animal Care and Use Committee of Anhui Medical University (approval No. 20180248) in December 2017.
Publisher
Wolters Kluwer India Pvt. Ltd,Medknow Publications and Media Pvt. Ltd,Medknow Publications & Media Pvt. Ltd,Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China,Wolters Kluwer - Medknow,Wolters Kluwer Medknow Publications