MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers
Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers
Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers
Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers
Journal Article

Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers

2014
Request Book From Autostore and Choose the Collection Method
Overview
John Lis, Adam Siepel and colleagues map transcription start sites across the genome in two human cell lines using a nuclear run-on protocol called GRO-cap. They find a common architecture of initiation at both promoters and enhancers and that transcript elongation stability provides the strongest distinction between promoters and enhancers. Despite the conventional distinction between them, promoters and enhancers share many features in mammals, including divergent transcription and similar modes of transcription factor binding. Here we examine the architecture of transcription initiation through comprehensive mapping of transcription start sites (TSSs) in human lymphoblastoid B cell (GM12878) and chronic myelogenous leukemic (K562) ENCODE Tier 1 cell lines. Using a nuclear run-on protocol called GRO-cap, which captures TSSs for both stable and unstable transcripts, we conduct detailed comparisons of thousands of promoters and enhancers in human cells. These analyses identify a common architecture of initiation, including tightly spaced (110 bp apart) divergent initiation, similar frequencies of core promoter sequence elements, highly positioned flanking nucleosomes and two modes of transcription factor binding. Post-initiation transcript stability provides a more fundamental distinction between promoters and enhancers than patterns of histone modification and association of transcription factors or co-activators. These results support a unified model of transcription initiation at promoters and enhancers.