MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Optimal endobronchial tool sizes for targeting lung lesions based on 3D modeling
Optimal endobronchial tool sizes for targeting lung lesions based on 3D modeling
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Optimal endobronchial tool sizes for targeting lung lesions based on 3D modeling
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Optimal endobronchial tool sizes for targeting lung lesions based on 3D modeling
Optimal endobronchial tool sizes for targeting lung lesions based on 3D modeling

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Optimal endobronchial tool sizes for targeting lung lesions based on 3D modeling
Optimal endobronchial tool sizes for targeting lung lesions based on 3D modeling
Journal Article

Optimal endobronchial tool sizes for targeting lung lesions based on 3D modeling

2017
Request Book From Autostore and Choose the Collection Method
Overview
For patients with suspicious lung lesions found on chest x-ray or CT, endo/trans- bronchial biopsy of the lung is the preferred method for obtaining a diagnosis. With the addition of new screening programs, a higher number of patients will require diagnostic biopsy which will prove even more challenging due to the small size of lesions found with screening. There are many endobronchial tools available on the market today and a wide range of new tools under investigation to improve diagnostic yield. However, there is little information available about the optimal tool size required to reach the majority of lesions, especially peripheral ones. In this manuscript we investigate the percentage of lesions that can be reached for various diameter tools if the tools remain inside the airways (i.e. endobronchial biopsy) and the distance a tool must travel \"off-road\" (or outside of the airways) to reach all lesions. To further understand the distribution of lung lesions with respect to airway sizes and distances from the airways, six 3D models of the lung were generated. The airways were modeled at two different respiratory phases (inspiration and expiration). Three sets of 1,000 lesions were randomly distributed throughout the lung for each respiratory phase. The simulations showed that the percentage of reachable lesions decreases with increasing tool diameter and decreasing lesion diameter. A 1mm diameter tool will reach <25% of 1cm lesions if it remains inside the airways. To reach all 1cm lesions this 1mm tool would have to navigate through the parenchyma up to 8.5mm. CT scans of 21 patient lesions confirm these results reasonably well. The smaller the tool diameter the more likely it will be able to reach a lung lesion, whether it be for diagnostic biopsy, ablation, or resection. However, even a 1mm tool is not small enough to reach the majority of small (1-2cm) lesions. Therefore, it is necessary for endobronchial tools to be able to navigate through the parenchyma to reach the majority of lesions.