MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract
Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract
Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract
Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract
Journal Article

Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract

2019
Request Book From Autostore and Choose the Collection Method
Overview
Background Metabolic reprogramming is one of the hallmarks of cancer which favours rapid energy production, biosynthetic capabilities and therapy resistance. In our previous study, we showed bitter melon extract (BME) prevents carcinogen induced mouse oral cancer. RNA sequence analysis from mouse tongue revealed a significant modulation in “Metabolic Process” by altering glycolysis and lipid metabolic pathways in BME fed group as compared to cancer group. In present study, we evaluated the effect of BME on glycolysis and lipid metabolism pathways in human oral cancer cells. Methods Cal27 and JHU022 cells were treated with BME. RNA and protein expression were analysed for modulation of glycolytic and lipogenesis genes by quantitative real-time PCR, western blot analyses and immunofluorescence. Lactate and pyruvate level was determined by GC/MS. Extracellular acidification and glycolytic rate were measured using the Seahorse XF analyser. Shotgun lipidomics in Cal27 and JHU022 cell lines following BME treatment was performed by ESI/ MS. ROS was measured by FACS. Results Treatment with BME on oral cancer cell lines significantly reduced mRNA and protein expression levels of key glycolytic genes SLC2A1 (GLUT-1), PFKP, LDHA, PKM and PDK3. Pyruvate and lactate levels and glycolysis rate were reduced in oral cancer cells following BME treatment. In lipogenesis pathway, we observed a significant reduction of genes involves in fatty acid biogenesis, ACLY, ACC1 and FASN, at the mRNA and protein levels following BME treatment. Further, BME treatment significantly reduced phosphatidylcholine, phosphatidylethanolamine, and plasmenylethanolamine, and reduced iPLA2 activity. Additionally, BME treatment inhibited lipid raft marker flotillin expression and altered its subcellular localization. ER-stress associated CHOP expression and generation of mitochondrial reactive oxygen species were induced by BME, which facilitated apoptosis. Conclusion Our study revealed that bitter melon extract inhibits glycolysis and lipid metabolism and induces ER and oxidative stress-mediated cell death in oral cancer. Thus, BME-mediated metabolic reprogramming of oral cancer cells will have important preventive and therapeutic implications along with conventional therapies. Graphical abstract