MbrlCatalogueTitleDetail

Do you wish to reserve the book?
ATP-dependent human RISC assembly pathways
ATP-dependent human RISC assembly pathways
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
ATP-dependent human RISC assembly pathways
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
ATP-dependent human RISC assembly pathways
ATP-dependent human RISC assembly pathways

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
ATP-dependent human RISC assembly pathways
ATP-dependent human RISC assembly pathways
Journal Article

ATP-dependent human RISC assembly pathways

2010
Request Book From Autostore and Choose the Collection Method
Overview
Small RNAs function within the context of RNA-induced silencing complexes (RISCs) containing Argonaute (AGO) subfamily proteins. Experiments now show that human RISC assembly is uncoupled from dicing and is facilitated by ATP to load the small RNA duplexes but is not necessary to unwind them. The four human AGO proteins show no obvious structural preferences for small RNA duplexes in contrast to the situation in flies and worms where small RNAs are actively sorted into distinct AGO proteins according to their structural features. The assembly of RNA-induced silencing complex (RISC) is a key process in small RNA–mediated gene silencing. In humans, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are incorporated into RISCs containing the Argonaute (AGO) subfamily proteins Ago1–4. Previous studies have proposed that, unlike Drosophila melanogaster RISC assembly pathways, human RISC assembly is coupled with dicing and is independent of ATP. Here we show by careful reexamination that, in humans, RISC assembly and dicing are uncoupled, and ATP greatly facilitates RISC loading of small-RNA duplexes. Moreover, all four human AGO proteins show remarkably similar structural preferences for small-RNA duplexes: central mismatches promote RISC loading, and seed or 3′-mid (guide position 12–15) mismatches facilitate unwinding. All these features of human AGO proteins are highly reminiscent of fly Ago1 but not fly Ago2.

MBRLCatalogueRelatedBooks