MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Multilocus Sequence Typing of Borrelia burgdorferi Suggests Existence of Lineages with Differential Pathogenic Properties in Humans
Multilocus Sequence Typing of Borrelia burgdorferi Suggests Existence of Lineages with Differential Pathogenic Properties in Humans
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Multilocus Sequence Typing of Borrelia burgdorferi Suggests Existence of Lineages with Differential Pathogenic Properties in Humans
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Multilocus Sequence Typing of Borrelia burgdorferi Suggests Existence of Lineages with Differential Pathogenic Properties in Humans
Multilocus Sequence Typing of Borrelia burgdorferi Suggests Existence of Lineages with Differential Pathogenic Properties in Humans

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Multilocus Sequence Typing of Borrelia burgdorferi Suggests Existence of Lineages with Differential Pathogenic Properties in Humans
Multilocus Sequence Typing of Borrelia burgdorferi Suggests Existence of Lineages with Differential Pathogenic Properties in Humans
Journal Article

Multilocus Sequence Typing of Borrelia burgdorferi Suggests Existence of Lineages with Differential Pathogenic Properties in Humans

2013
Request Book From Autostore and Choose the Collection Method
Overview
The clinical manifestations of Lyme disease, caused by Borrelia burgdorferi, vary considerably in different patients, possibly due to infection by strains with varying pathogenicity. Both rRNA intergenic spacer and ospC typing methods have proven to be useful tools for categorizing B. burgdorferi strains that vary in their tendency to disseminate in humans. Neither method, however, is suitable for inferring intraspecific relationships among strains that are important for understanding the evolution of pathogenicity and the geographic spread of disease. In this study, multilocus sequence typing (MLST) was employed to investigate the population structure of B. burgdorferi recovered from human Lyme disease patients. A total of 146 clinical isolates from patients in New York and Wisconsin were divided into 53 sequence types (STs). A goeBURST analysis, that also included previously published STs from the northeastern and upper Midwestern US and adjoining areas of Canada, identified 11 major and 3 minor clonal complexes, as well as 14 singletons. The data revealed that patients from New York and Wisconsin were infected with two distinct, but genetically and phylogenetically closely related, populations of B. burgdorferi. Importantly, the data suggest the existence of B. burgdorferi lineages with differential capabilities for dissemination in humans. Interestingly, the data also indicate that MLST is better able to predict the outcome of localized or disseminated infection than is ospC typing.