Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
RETRACTED: A New Finger Vein Verification Method Focused On The Protection Of The Template
by
Jumaa, Shereen S
, Zidan, Khamis A
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
RETRACTED: A New Finger Vein Verification Method Focused On The Protection Of The Template
by
Jumaa, Shereen S
, Zidan, Khamis A
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
RETRACTED: A New Finger Vein Verification Method Focused On The Protection Of The Template
Journal Article
RETRACTED: A New Finger Vein Verification Method Focused On The Protection Of The Template
2020
Request Book From Autostore
and Choose the Collection Method
Overview
This paper examines a collection of finger vein enhancement stages that have not only low computational complexity but also high distinguishing capacity. This proposed series of enhancement stages is based on the equalization of fuzzy histograms. A mixture of Hierarchical Centroid and Gradient Histograms was used to extract features. Both the enhancement stages were evaluated using 6 fold stratified cross validation with K Nearest Neighbor and Support Vector Machine (SVM). Experimental results show that the (KNN) algorithm is a simple, easy-to-implement supervised machine learning algorithm which can be used to solve problems of classification and regression. Calculations of KNN in the test data are highly accurate. Using stratified 6-fold analyzes on all fingers of all hands in the collected database, when selecting the right and middle fingers based on the analysis of the 106 people in the data set. Compared with SVM and related works, the algorithm proposed has optimum performance.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.