MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species
Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species
Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species
Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species
Journal Article

Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

2010
Request Book From Autostore and Choose the Collection Method
Overview
The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth's carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (~0.19 Pg C yr-1 ), 3-D spatially-distributed emissions from aviation (~0.16 Pg C yr-1 ), and 3-D chemical production of CO2 (~1.05 Pg C yr-1 ). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2 , it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2 . We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May-June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (~3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (~10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.