MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Ecotoxicity of Copper
Ecotoxicity of Copper
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Ecotoxicity of Copper
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Ecotoxicity of Copper
Ecotoxicity of Copper

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Ecotoxicity of Copper
Journal Article

Ecotoxicity of Copper

2022
Request Book From Autostore and Choose the Collection Method
Overview
Copper (Cu) is a ubiquitous trace element in the aquatic environment, and is usually found at low levels. Copper environmental concentrations can be altered as a result anthropogenic activities. Shellfish are useful bioindicators to ensure adequate environmental monitoring. Thus, the aim of the present study was as follows: (a) determine the LC[sub.50] of copper(I) chloride in grooved carpet shell (Ruditapes decussatus) collected in the Santa Gilla lagoon (Sardinia, Italy), and (b) analyze the antioxidant biomarkers in digestive gland and gills of same specimens exposed to different concentrations of the above-mentioned metal (0.045, 0.45, and 0.90 mg/L) for 96 h. A withdrawal period of 96 h was considered for the treated clam, carrying out the same biochemical analyses, superoxide dismutase (SOD), catalase (CAT), selenium-dependent glutathione peroxidase (Se-GPx), glutathione S-transferases (GSTs), and total glutathione (GSH+2GSSG) in the two tissues. Different time and dose responses of the antioxidant biomarkers were recorded in the digestive glands and gills. Oxidative stress biomarkers highlighted the ability of Cu to induce oxidative stress in R. decussatus. Clam, following the withdrawal period of 96 h, has not been able to achieve the control levels of all biochemical markers in the digestive gland and gills. R. decussatus can be a suitable model to assess the ecotoxicity of copper in aquatic ecosystems. These findings may advance knowledge on the role and the effects of copper on oxidative stress biomarkers in grooved carpet shell. The metal ecotoxicity response can be useful to perform accurate biomarker-based monitoring programs using this bivalve species.
Publisher
MDPI AG