MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An inconsistency-based approach for sensing assessment in unknown environments
An inconsistency-based approach for sensing assessment in unknown environments
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An inconsistency-based approach for sensing assessment in unknown environments
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An inconsistency-based approach for sensing assessment in unknown environments
An inconsistency-based approach for sensing assessment in unknown environments

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An inconsistency-based approach for sensing assessment in unknown environments
An inconsistency-based approach for sensing assessment in unknown environments
Dissertation

An inconsistency-based approach for sensing assessment in unknown environments

2009
Request Book From Autostore and Choose the Collection Method
Overview
While exploring an unknown environment, an intelligent agent has only its sensors to guide its actions. Each sensor’s ability to provide accurate information depends on the environment’s characteristics. If the agent does not know these characteristics, how can it determine which sensors to rely on? This problem is exacerbated by sensing anomalies: cases where sensor(s) are working but the readings lead to an incorrect interpretation of the environment, e.g. laser sensors cannot detect glass. This work addresses the following research question: Can an inconsistency-based sensing accuracy indicator, which relies solely on fused sensor readings, be used to detect and characterize sensing anomalies in unknown environments? A novel inconsistency-based approach was investigated for sensing anomaly detection and characterization by a mobile robot using range sensing for mapping. Based on the hypothesis that sensing anomalies manifest as inconsistent sensor readings, the approach employed Dempster-Shafer theory and six metrics from the evidential literature to measure the magnitude of inconsistency. These were applied directly to fused sensor data with a threshold, forming an indicator, used to distinguish minor noise from anomalous readings. Experiments with real sensor data from four indoor and two outdoor environments showed that three of the six evidential inconsistency metrics can partially address the issue of noticing sensing anomalies in unknown environments. Polaroid sonar sensors, SICK laser range finders, and a Canesta range camera were used. Despite extensive training in known environments, the indicators could not reliably detect sensing anomalies, i.e. distinguish them from ordinary noise. However, sensing accuracy could be estimated (correlations with sensor error exceeded 0.8) and regions with suspect readings could be isolated. Trained indicators failed to rank sensors, but improved map quality by resetting suspect regions (up to 57.65%) or guiding sensor selection (up to 75.86%). This work contributes to the robotics and uncertainty in artificial intelligence communities by establishing the use of evidential metrics for adapting a single sensor or identifying the most accurate sensor to optimize the sensing accuracy in unknown environments. Future applications could enable intelligent systems to switch information sources to optimize mission performance and identify the reliability of sources for different environments.
Publisher
ProQuest Dissertations & Theses
ISBN
1124181954, 9781124181950