MbrlCatalogueTitleDetail

Do you wish to reserve the book?
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
Journal Article

UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells

2011
Request Book From Autostore and Choose the Collection Method
Overview
It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O 2 at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F 1 F 0 ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential. While studying metabolic fluxes in human pluripotent stem cells, this paper reveals UCP2 as metabolic switch from glycolysis to OXPHOS, facilitating early differentiation events.

MBRLCatalogueRelatedBooks