MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mitigating the Rock-Salt Phase Transformation in Disordered LNMO Through Synergetic Solid-State AlF3/LiF Modifications
Mitigating the Rock-Salt Phase Transformation in Disordered LNMO Through Synergetic Solid-State AlF3/LiF Modifications
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mitigating the Rock-Salt Phase Transformation in Disordered LNMO Through Synergetic Solid-State AlF3/LiF Modifications
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mitigating the Rock-Salt Phase Transformation in Disordered LNMO Through Synergetic Solid-State AlF3/LiF Modifications
Mitigating the Rock-Salt Phase Transformation in Disordered LNMO Through Synergetic Solid-State AlF3/LiF Modifications

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mitigating the Rock-Salt Phase Transformation in Disordered LNMO Through Synergetic Solid-State AlF3/LiF Modifications
Mitigating the Rock-Salt Phase Transformation in Disordered LNMO Through Synergetic Solid-State AlF3/LiF Modifications
Journal Article

Mitigating the Rock-Salt Phase Transformation in Disordered LNMO Through Synergetic Solid-State AlF3/LiF Modifications

2025
Request Book From Autostore and Choose the Collection Method
Overview
High-voltage disordered spinel LiNi0.5Mn1.5O4 is a promising cathode material for high power density in lithium-ion batteries. However, it suffers from poor cycle life associated with the rock-salt phase transformation. This study presents a straightforward synthesis approach to enhance the electrochemical performance of LiNi0.5Mn1.5O4 through a synergistic solid-state modification with LiF and AlF3. This dual modification promotes rapid Li⁺ diffusion, enables near-complete delithiation/lithiation, approaching the theoretical capacity of disordered LiNi0.5Mn1.5O4, and, more importantly, effectively mitigates the formation of the rock-salt phase, thereby enhancing structural stability, as confirmed by operando X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (SXRD). As a result, the optimized LiNi0.5Mn1.5O4 (10 mg AlF3 + 30 mg LiF) delivers high reversible capacities of 142.1, 139.1, 129.2, 121.6, 110.3, 93.5, and 76.1 mAh∙g-1 at 0.2C, 0.5C, 1.0C, 2.0C, 3.0C, 4.0C, and 5.0C, respectively. Full cells using graphite as the anode and a high-loading cathode exhibit excellent cycling performance. They retain 80% of their capacity after 200 cycles at 0.5C within a voltage window of 3.5-4.9 V with cathode loading of 11 mg∙cm-2. The findings of this study will significantly advance high-power LiNi0.5Mn1.5O4 materials, offering improved battery life and thereby enhancing their potential for practical applications.High-voltage disordered spinel LiNi0.5Mn1.5O4 is a promising cathode material for high power density in lithium-ion batteries. However, it suffers from poor cycle life associated with the rock-salt phase transformation. This study presents a straightforward synthesis approach to enhance the electrochemical performance of LiNi0.5Mn1.5O4 through a synergistic solid-state modification with LiF and AlF3. This dual modification promotes rapid Li⁺ diffusion, enables near-complete delithiation/lithiation, approaching the theoretical capacity of disordered LiNi0.5Mn1.5O4, and, more importantly, effectively mitigates the formation of the rock-salt phase, thereby enhancing structural stability, as confirmed by operando X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (SXRD). As a result, the optimized LiNi0.5Mn1.5O4 (10 mg AlF3 + 30 mg LiF) delivers high reversible capacities of 142.1, 139.1, 129.2, 121.6, 110.3, 93.5, and 76.1 mAh∙g-1 at 0.2C, 0.5C, 1.0C, 2.0C, 3.0C, 4.0C, and 5.0C, respectively. Full cells using graphite as the anode and a high-loading cathode exhibit excellent cycling performance. They retain 80% of their capacity after 200 cycles at 0.5C within a voltage window of 3.5-4.9 V with cathode loading of 11 mg∙cm-2. The findings of this study will significantly advance high-power LiNi0.5Mn1.5O4 materials, offering improved battery life and thereby enhancing their potential for practical applications.

MBRLCatalogueRelatedBooks