Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Background-free search for neutrinoless double-β decay of 76 Ge with GERDA
2017
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Do you wish to request the book?
Background-free search for neutrinoless double-β decay of 76 Ge with GERDA
2017
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Background-free search for neutrinoless double-β decay of 76 Ge with GERDA
Journal Article
Background-free search for neutrinoless double-β decay of 76 Ge with GERDA
2017
Request Book From Autostore
and Choose the Collection Method
Overview
Many extensions of the Standard Model of particle physics explain the dominance of matter over antimatter in our Universe by neutrinos being their own antiparticles. This would imply the existence of neutrinoless double-β decay, which is an extremely rare lepton-number-violating radioactive decay process whose detection requires the utmost background suppression. Among the programmes that aim to detect this decay, the GERDA Collaboration is searching for neutrinoless double-β decay of
Ge by operating bare detectors, made of germanium with an enriched
Ge fraction, in liquid argon. After having completed Phase I of data taking, we have recently launched Phase II. Here we report that in GERDA Phase II we have achieved a background level of approximately 10
counts keV
kg
yr
. This implies that the experiment is background-free, even when increasing the exposure up to design level. This is achieved by use of an active veto system, superior germanium detector energy resolution and improved background recognition of our new detectors. No signal of neutrinoless double-β decay was found when Phase I and Phase II data were combined, and we deduce a lower-limit half-life of 5.3 × 10
years at the 90 per cent confidence level. Our half-life sensitivity of 4.0 × 10
years is competitive with the best experiments that use a substantially larger isotope mass. The potential of an essentially background-free search for neutrinoless double-β decay will facilitate a larger germanium experiment with sensitivity levels that will bring us closer to clarifying whether neutrinos are their own antiparticles.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.