MbrlCatalogueTitleDetail

Do you wish to reserve the book?
HiDRA-seq: High-Throughput SARS-CoV-2 Detection by RNA Barcoding and Amplicon Sequencing
HiDRA-seq: High-Throughput SARS-CoV-2 Detection by RNA Barcoding and Amplicon Sequencing
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
HiDRA-seq: High-Throughput SARS-CoV-2 Detection by RNA Barcoding and Amplicon Sequencing
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
HiDRA-seq: High-Throughput SARS-CoV-2 Detection by RNA Barcoding and Amplicon Sequencing
HiDRA-seq: High-Throughput SARS-CoV-2 Detection by RNA Barcoding and Amplicon Sequencing

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
HiDRA-seq: High-Throughput SARS-CoV-2 Detection by RNA Barcoding and Amplicon Sequencing
HiDRA-seq: High-Throughput SARS-CoV-2 Detection by RNA Barcoding and Amplicon Sequencing
Paper

HiDRA-seq: High-Throughput SARS-CoV-2 Detection by RNA Barcoding and Amplicon Sequencing

2020
Request Book From Autostore and Choose the Collection Method
Overview
The recent outbreak of a new coronavirus that causes a Severe Acute Respiratory Syndrome in humans (SARS-CoV-2) has developed into a global pandemic with over 6 million reported cases and more than 375,000 deaths worldwide. Many countries have faced a shortage of diagnostic kits as well as a lack of infrastructure to perform necessary testing. Due to these limiting factors, only patients showing symptoms indicating infection were subjected to testing, whilst asymptomatic individuals, who are widely believed to be responsible for the fast dispersion of the virus, were largely omitted from the testing regimes. The inability to implement high throughput diagnostic and contact tracing strategies has forced many countries to institute lockdowns with severe economic and social consequences. The World Health Organization (WHO) has encouraged affected countries to increase testing capabilities to identify new cases, allow for a well-controlled lifting of lockdown measures, and prepare for future outbreaks. Here, we propose HiDRA-seq, a rapidly implementable, high throughput, and scalable solution that uses NGS lab infrastructure and reagents for population-scale SARS-CoV-2 testing. This method is based on the use of indexed oligo-dT primers to generate barcoded cDNA from a large number of patient samples. From this, highly multiplexed NGS libraries are prepared targeting SARS-CoV-2 specific regions and sequenced. The low amount of sequencing data required for diagnosis allows the combination of thousands of samples in a sequencing run, while reducing the cost to approximately 2 CHF/EUR/USD per RNA sample. Here, we describe in detail the first version of the protocol, which can be further improved in the future to increase its sensitivity and to identify other respiratory viruses or analyze individual genetic features associated with disease progression.
Publisher
Cold Spring Harbor Laboratory
Subject