MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO)
Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO)
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO)
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO)
Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO)

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO)
Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO)
Journal Article

Electric transport mechanism and magnetoresistance of La0.80Sr0.15Ag0.05MnO3/x(CuO)

2015
Request Book From Autostore and Choose the Collection Method
Overview
The samples of La0.80Sr0.15Ag0.05MnO3/x(CuO) (x = 0, 0.05, 0.10, 0.15, 0.20) were prepared by the solid-state reaction method, and the structure of the sampies was detected by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), electric transport mechanism, and magnetoresistance enhancement, and the temperature stability of magnetoresistance of the samples was studied through resistivity-temperature (ρ-T) curves, ρ-T fitted curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that ρ-T data can be fitted by the formula ρ = ρ0 + AT^2 very well, and the electric transport mechanism of all the samples in metal-like area is the scattering of single magneton upon spin electron; the magnetoresistance of composite samples is far larger than that of the original material, and the MR peak value of the sample with x = 0.20 is nearly 4 times as large as that of the sample with x = 0; composite samples have comparatively good temperature stability of magnetoresistance in the temperature range of 200-260 K, and the magnetoresistance of the sample with x = 0.15 almost does not change with temperature and keeps at (5.03 ± 0.20) % in the temperature range of 210-260 K.