Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Tribological behaviour of biomedical Ti–Zr-based shape memory alloys
by
Wen-Tao Qu Xu-Guang Sun Bi-Fei Yuan Kang-Ming Li Zhen-Guo Wang Yan Li
2017
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Tribological behaviour of biomedical Ti–Zr-based shape memory alloys
by
Wen-Tao Qu Xu-Guang Sun Bi-Fei Yuan Kang-Ming Li Zhen-Guo Wang Yan Li
2017
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Tribological behaviour of biomedical Ti–Zr-based shape memory alloys
Journal Article
Tribological behaviour of biomedical Ti–Zr-based shape memory alloys
2017
Request Book From Autostore
and Choose the Collection Method
Overview
The tribological behaviour of Ti–30Zr, Ti–20Zr–10Nb and Ti–19Zr–10Nb–1Fe alloys was investigated using reciprocating friction and wear tests. X-ray diffraction(XRD) results indicate that Ti–30Zr, Ti–20Zr–10Nb and Ti–19Zr–10Nb–1Fe alloys are composed of hexagonal a’-martensite, orthorhombic a’’-martensite and bcc β phases,respectively. Ti–30Zr alloy has the highest hardness of HV(273.1 ± 9.3), while Ti–20Zr–10Nb alloy exhibits the lowest hardness of HV(235.2 ± 20.4) among all the alloys.The tribological results indicate that Ti–30Zr alloy shows the best wear resistance among these alloys, corresponding to the minimum average friction coefficient of 0.052 and the lowest wear rate of 6.4x10-4mm3·N-1·m-1. Ti–20Zr–10Nb alloy displays better wear resistance than Ti–19Zr–10Nb–1Fe alloy, because the iron oxide is easy to fall off and less Nb2O5 films form on the worn surface of the latter.Delamination and abrasive wear in association with adhesive wear are the main wear mechanism of these alloys.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.