Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Modelling framework for integration of large-scale heat pumps in district heating using low-temperature heat sources
by
Brian Elmegaard
, Wiebke Brix Markussen
, Henrik Pieper
, Anna Volkova
, Torben Ommen
, Vladislav Mašatin
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Modelling framework for integration of large-scale heat pumps in district heating using low-temperature heat sources
by
Brian Elmegaard
, Wiebke Brix Markussen
, Henrik Pieper
, Anna Volkova
, Torben Ommen
, Vladislav Mašatin
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Modelling framework for integration of large-scale heat pumps in district heating using low-temperature heat sources
Journal Article
Modelling framework for integration of large-scale heat pumps in district heating using low-temperature heat sources
2019
Request Book From Autostore
and Choose the Collection Method
Overview
The paper presents a modelling framework that may be used to plan the integration of large-scale HPs in district heating (DH) areas. By use of the methodology both optimal HP capacities to be installed and optimal choice of heat source to be used during the year are identified by minimizing total cost of ownership including investment and operational costs. The modelling framework uses mixed-integer linear programming and hourly calculations over one year. Seasonal variations of the heat source temperatures, capacity limitations and HP coefficient of performance as well as technical constraints were taken into account. The DH network of Tallinn, Estonia, was used as a case study. Six different heat source types were identified for 13 potential locations of large-scale HPs. The results showed that the integration of large-scale HPs in the DH network of Tallinn is economically feasible. It was found that 122 MW HP capacity could be installed without compromising the operation of sustainable base load units. The heat sources needed for obtaining this solution were sewage water, river water, ambient air, seawater and groundwater. It was further shown that the Lorenz efficiency depends on the variations of heat source temperatures.
Publisher
Aalborg University Open Publishing
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.