Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A New Approach of Antiskid Braking System Method
by
Ismail, HasanChieng, Wei-HuaJeng, Shyr-Long
in
Automobiles, Electric
/ Computer storage device industry
/ Methods
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A New Approach of Antiskid Braking System Method
by
Ismail, HasanChieng, Wei-HuaJeng, Shyr-Long
in
Automobiles, Electric
/ Computer storage device industry
/ Methods
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Journal Article
A New Approach of Antiskid Braking System Method
2021
Request Book From Autostore
and Choose the Collection Method
Overview
A classical antiskid brake system (ABS) is typically used to control the brake fluid pressure by creating repeated cycles of decreasing and increasing brake force to avoid wheel locking, causing the fluctuation of the brake hydraulic pressure and resulting in vibration during wheel rotation. This article proposes a new approach of skid control for ABS by controlling the disk pad position. This new approach involves using a modest control method to determine the optimal skid that allows the wheel to exert maximum friction force for decelerating the vehicle by shifting the brake pad position instead of modulating the brake fluid pressure. This pad position control (PPC) method works in a continuous manner. Therefore, no rapid changes are required in the brake pressure and wheel rotation speed. To identify the PPC braking performance, braking test simulations and experiments have been carried out. The optimal pad position was calculated by estimating the friction coefficient, in which the wheel skid was maintained in range. Different initial velocities and road conditions were used to study the braking behavior. Furthermore, the experimental results obtained using the PPC method, an ABS, and the conventional braking method in a braking test simulator were compared. Results show that the PPC method exhibited a suitable performance for wheel lock-up prevention. A significant reduction was obtained in the brake fluid oscillation and braking distance with the PPC method. Thus, the PPC method is a method suitable for controlling the wheel skid with limited vibration. This method is applicable to autonomous or electric cars because of the influence of voltage fluctuation on the motor-drive avoidance.
Publisher
SAE International
This website uses cookies to ensure you get the best experience on our website.