MbrlCatalogueTitleDetail

Do you wish to reserve the book?
To Be: Discovering Malicious USB Peripherals through Neural Network-Driven Power Analysis
To Be: Discovering Malicious USB Peripherals through Neural Network-Driven Power Analysis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
To Be: Discovering Malicious USB Peripherals through Neural Network-Driven Power Analysis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
To Be: Discovering Malicious USB Peripherals through Neural Network-Driven Power Analysis
To Be: Discovering Malicious USB Peripherals through Neural Network-Driven Power Analysis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
To Be: Discovering Malicious USB Peripherals through Neural Network-Driven Power Analysis
To Be: Discovering Malicious USB Peripherals through Neural Network-Driven Power Analysis
Journal Article

To Be: Discovering Malicious USB Peripherals through Neural Network-Driven Power Analysis

2024
Request Book From Autostore and Choose the Collection Method
Overview
Nowadays, The Universal Serial Bus (USB) is one of the most adopted communication standards. However, the ubiquity of this technology has attracted the interest of attackers. This situation is alarming, considering that the USB protocol has penetrated even into critical infrastructures. Unfortunately, the majority of the contemporary security detection and prevention mechanisms against USB-specific attacks work at the application layer of the USB protocol stack and, therefore, can only provide partial protection, assuming that the host is not itself compromised. Toward this end, we propose a USB authentication system designed to identify (and possibly block) heterogeneous USB-based attacks directly from the physical layer. Empirical observations demonstrate that any extraneous/malicious activity initiated by malicious/compromised USB peripherals tends to consume additional electrical power. Driven by this observation, our proposed solution is based on the analysis of the USB power consumption patterns. Valuable power readings can easily be obtained directly by the power lines of the USB connector with low-cost, off-the-shelf equipment. Our experiments demonstrate the ability to effectively distinguish benign from malicious USB devices, as well as USB peripherals from each other, relying on the power side channel. At the core of our analysis lies an Autoencoder model that handles the feature extraction process; this process is paired with a long short-term memory (LSTM) and a convolutional neural network (CNN) model for detecting malicious peripherals. We meticulously evaluated the effectiveness of our approach and compared its effectiveness against various other shallow machine learning (ML) methods. The results indicate that the proposed scheme can identify USB devices as benign or malicious/counterfeit with a perfect F1-score.