Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Exploring the reactivity patterns of cationic and neutral rhodium bis-phosphine species with amine-boranes
by
Sewell, Laura Jane
in
Organic chemistry
2013
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Exploring the reactivity patterns of cationic and neutral rhodium bis-phosphine species with amine-boranes
by
Sewell, Laura Jane
in
Organic chemistry
2013
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Exploring the reactivity patterns of cationic and neutral rhodium bis-phosphine species with amine-boranes
Dissertation
Exploring the reactivity patterns of cationic and neutral rhodium bis-phosphine species with amine-boranes
2013
Request Book From Autostore
and Choose the Collection Method
Overview
This thesis details the synthesis of novel Rh(I) and Rh(III) bis-phosphine fragments, and their use, along with other known rhodium species, to investigate the reactivity of amine-boranes, with a particular focus on the dehydrocoupling of the secondary amine-borane H3B.NMe2H (DMAB). Chapter 2 utilises the new mixed phosphine, PtBuiBu2, to investigate the role of the phosphine with regard to the corresponding low-coordinate organometallic species isolated. Their coordination and reactivity with amine-boranes is studied, leading to the development of a mechanism for an alkene hydroboration catalyst that employs H3B.NMe3 (TMAB). The final section of the chapter studies several fluxional processes pertinent to rhodium and iridium complexes of the model amine-borane TMAB using H/D exchange and low temperature NMR experiments. In Chapter 3, the mechanism of dehydrocoupling of DMAB is investigated in detail, employing catalysts based on the cationic bis¬-phosphine Rh fragment, {Rh(PCy3)2Ln}+. A series of stoichiometric and catalytic reactions are probed using NMR spectroscopy and mass spectrometry, revealing a complex mechanistic landscape. Subtleties include: the product of dehydrocoupling, [H2BNMe2]2, acting in an autocatalytic role; and parallel dehydrogenation of DMAB by a neutral catalyst present in a low but constant concentration. The mechanism was additionally interrogated through kinetic simulations conducted by Prof. Guy C. Lloyd-Jones (University of Bristol). From this, a generic mechanistic scheme has been suggested, aspects of which can be applied to transition metal and main group systems reported to catalyse the dehydrocoupling of DMAB. The final chapter moves on from cationic rhodium fragments to investigate the reactivity of the neutral rhodium species, Rh(H)2(PCy3)2Cl and [Rh(PCy3)2Cl]2, with amine-boranes. The mechanism by which Rh(H)2(PCy3)2Cl catalyses the dehydrogenation of DMAB has been investigated through initial rate and H/D exchange experiments, leading to the proposal of a reaction scheme. Additionally, the formation and characterisation of a base-stabilised boryl species has been reported resulting from the reactivity of an amino-borane with [Rh(PCy3)2Cl]2.
Publisher
ProQuest Dissertations & Theses
Subject
MBRLCatalogueRelatedBooks
Related Items
Related Items
This website uses cookies to ensure you get the best experience on our website.