Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Single-snapshot DOA estimation by using Compressed Sensing
by
Grasso, Raffaele
, Gini, Fulvio
, tunati, Stefano
, Greco, Maria S
, Lepage, Kevin
2014
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Single-snapshot DOA estimation by using Compressed Sensing
by
Grasso, Raffaele
, Gini, Fulvio
, tunati, Stefano
, Greco, Maria S
, Lepage, Kevin
2014
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Single-snapshot DOA estimation by using Compressed Sensing
Journal Article
Single-snapshot DOA estimation by using Compressed Sensing
2014
Request Book From Autostore
and Choose the Collection Method
Overview
This paper deals with the problem of estimating the directions of arrival (DOA) of multiple source signals from a single observation vector of an array data. In particular, four estimation algorithms based on the theory of compressed sensing (CS), i.e., the classical ^sub 1^ minimization (or Least Absolute Shrinkage and Selection Operator, LASSO), the fast smooth ^sub 0^ minimization, and the Sparse Iterative Covariance-Based Estimator, SPICE and the Iterative Adaptive Approach for Amplitude and Phase Estimation, IAA-APES algorithms, are analyzed, and their statistical properties are investigated and compared with the classical Fourier beamformer (FB) in different simulated scenarios. We show that unlike the classical FB, a CS-based beamformer (CSB) has some desirable properties typical of the adaptive algorithms (e.g., Capon and MUSIC) even in the single snapshot case. Particular attention is devoted to the super-resolution property. Theoretical arguments and simulation analysis provide evidence that a CS-based beamformer can achieve resolution beyond the classical Rayleigh limit. Finally, the theoretical findings are validated by processing a real sonar dataset.[PUBLICATION ABSTRACT]
Publisher
Springer Nature B.V
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.