MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Ground-penetrating radar imaging of fluid flow through a discrete fracture
Ground-penetrating radar imaging of fluid flow through a discrete fracture
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Ground-penetrating radar imaging of fluid flow through a discrete fracture
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Ground-penetrating radar imaging of fluid flow through a discrete fracture
Ground-penetrating radar imaging of fluid flow through a discrete fracture

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Ground-penetrating radar imaging of fluid flow through a discrete fracture
Ground-penetrating radar imaging of fluid flow through a discrete fracture
Dissertation

Ground-penetrating radar imaging of fluid flow through a discrete fracture

2014
Request Book From Autostore and Choose the Collection Method
Overview
Predicting groundwater flow and transport of contaminants in fractured rock is challenging due to the heterogeneity of hydraulic properties that are difficult to characterize using conventional hydraulic testing methods. Heterogeneity is often introduced by fracture aperture variability that creates preferential flow pathways also referred to as flow channeling. Ground-penetrating radar (GPR) has been used successfully for imaging fractures. This study investigates the polarization properties and capabilities of GPR signals, both amplitude and phase, for 3-D imaging of flow channeling in a discrete, subhorizontal fracture. Two separate field studies were conducted at the Altona Flat Rock test site in New York State. The first, conducted in 2010, used surface-based multi-polarization 3-D GPR to examine the effects of radar signal polarization for imaging a fresh-water saturated, millimeter scale subhorizontal fracture. Imaging of a horizontal reflection plane should be independent of radar signal polarization. However, amplitude variations as a function of wavefield orientation were observed along the subhorizontal fracture plane indicating that polarization effects are significant. Furthermore, it was shown that summation of two orthogonal parallel-polarized signals compensates adequately for the polarization effects and results in a more accurate image of the fracture. Therefore, for imaging of flow through a discrete fracture, multi-polarization GPR acquisition is necessary. The second investigation, conducted in 2011, utilized a multi-component, surface based GPR to monitor saline tracer flow through the same water-saturated fracture. The multi-component system allowed for simultaneous acquisition of orthogonal polarizations. The presence of saline tracer in the fracture resulted in an amplitude increase and phase decrease of the reflected GPR signal. Hydraulic dipole-flow tracer tests were used to generate flow between boreholes within the fracture of interest. A five-spot well configuration allowed control over the hydraulic gradient orientation. Various concentrations of saline tracer were utilized with hydraulic gradients oriented E-W and N-S, as well as along the natural gradient. GPR imaging of saline tracer results revealed a direct and narrow channelized flow path along the E-W orientation based on both amplitude and phase changes suggesting good well connectivity. The N-S dipole tests revealed greater tracer dispersion over a larger area suggesting poorer well connectivity. These results are supported by hydraulic tests conducted at the site. This work supports imaging tracer flow using GPR signal amplitude and presents, for the first time, imaging changes in flow channeling based on hydraulic gradient orientation and the use of GPR phase for imaging saline tracer distribution.
Publisher
ProQuest Dissertations & Theses
ISBN
9781321557350, 1321557353