MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Robustness of stochastic bandit policies
Robustness of stochastic bandit policies
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Robustness of stochastic bandit policies
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Robustness of stochastic bandit policies
Robustness of stochastic bandit policies

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Robustness of stochastic bandit policies
Robustness of stochastic bandit policies
Paper

Robustness of stochastic bandit policies

2014
Request Book From Autostore and Choose the Collection Method
Overview
This paper studies the deviations of the regret in a stochastic multi-armed bandit problem. When the total number of plays n is known beforehand by the agent, Audibert et al. [2] exhibit a policy such that with probability at least 1-1/n, the regret of the policy is of order log n. They have also shown that such a property is not shared by the popular ucb1 policy of Auer et al. [3]. This work first answers an open question: it extends this negative result to any anytime policy (i.e. any policy that does not take the number of plays n into account). Another contribution of this paper is to design robust anytime policies for specific multi-armed bandit problems in which some restrictions are put on the set of possible distributions of the different arms. We also show that, for any policy (i.e. even when the number of plays n is known), the regret is of order log n with probability at least 1-1/n, so that the policy of Audibert et al. has the best possible deviation properties.
Publisher
Federal Reserve Bank of St. Louis

MBRLCatalogueRelatedBooks