Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Robustness of stochastic bandit policies
by
Audibert, Jean-Yves
, Salomon, Antoine
2014
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Do you wish to request the book?
Robustness of stochastic bandit policies
by
Audibert, Jean-Yves
, Salomon, Antoine
2014
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Paper
Robustness of stochastic bandit policies
2014
Request Book From Autostore
and Choose the Collection Method
Overview
This paper studies the deviations of the regret in a stochastic multi-armed bandit problem. When the total number of plays n is known beforehand by the agent, Audibert et al. [2] exhibit a policy such that with probability at least 1-1/n, the regret of the policy is of order log n. They have also shown that such a property is not shared by the popular ucb1 policy of Auer et al. [3]. This work first answers an open question: it extends this negative result to any anytime policy (i.e. any policy that does not take the number of plays n into account). Another contribution of this paper is to design robust anytime policies for specific multi-armed bandit problems in which some restrictions are put on the set of possible distributions of the different arms. We also show that, for any policy (i.e. even when the number of plays n is known), the regret is of order log n with probability at least 1-1/n, so that the policy of Audibert et al. has the best possible deviation properties.
Publisher
Federal Reserve Bank of St. Louis
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.