MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Scanning tunnelling microscopy studies of nonlocal atomic manipulation and molecular kinetics on the si(111)-7x7 surface
Scanning tunnelling microscopy studies of nonlocal atomic manipulation and molecular kinetics on the si(111)-7x7 surface
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Scanning tunnelling microscopy studies of nonlocal atomic manipulation and molecular kinetics on the si(111)-7x7 surface
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Scanning tunnelling microscopy studies of nonlocal atomic manipulation and molecular kinetics on the si(111)-7x7 surface
Scanning tunnelling microscopy studies of nonlocal atomic manipulation and molecular kinetics on the si(111)-7x7 surface

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Scanning tunnelling microscopy studies of nonlocal atomic manipulation and molecular kinetics on the si(111)-7x7 surface
Scanning tunnelling microscopy studies of nonlocal atomic manipulation and molecular kinetics on the si(111)-7x7 surface
Dissertation

Scanning tunnelling microscopy studies of nonlocal atomic manipulation and molecular kinetics on the si(111)-7x7 surface

2015
Request Book From Autostore and Choose the Collection Method
Overview
Molecule-by-molecule construction has for years offered the tantalising prospect of atomic-scale devices. Current transistor fabrication techniques have for decades moved toward progressively smaller dimensions. This has driven interest in ‘bottom up’ routes to nanofabrication, where atoms and molecules are arranged into a desired structure. The scanning tunnelling microscope (STM) offers such a route. Nanofabrication wth STM lithography can reach sub-nanometre resolution. To achieve such control over individual molecules, a sound understanding of the behaviour of molecules on the surface is fundamentally important. In particular, the behaviour of aromatic organic molecules on surfaces is important for many technologies. Part II of this thesis presents a study of thermally activated movement of aromatic molecules on Si(111)-7 × 7, as recorded by STM. There are distinct variations in the measured rates of thermal displacement and desorption, determined by the different binding sites within the Si(111)-7 × 7 unit cell. The variation in the rates is a consequence of differences in both the energy barriers and Arrhenius prefactors. We reveal site-preference in the adsorption site of an aromatic molecule as it enters the surface from the gas phase via a physisorbed precursor. The complexity of the adsorption mechanism cannot be properly captured by the Langmuir isotherm. A Monte-Carlo simulation that takes into account a mobile physisorbed precursor accurately describes the adsorption process, highlighting the importance of molecular kinetics during adsorption. Part III of this thesis presents STM induced manipulation of aromatic molecules on Si(111)-7 × 7. A high voltage pulse at a point of the Si(111)-7 × 7 surface can desorb benzene, toluene, or chlorobenzene upwards of ten nanometres away from the tunnel junction. Increasing the current or time of the pulse, and hence the number of electrons, causes more molecules to be desorbed. This creates a depopulated region around the pulse site. For benzene, toluene, or chlorobenzene, the threshold bias to the effect is 2.0 V, below which no desorption occurs. Electrons travel across the surface isotropically before inducing desorption in a single electron process (1.18 ± 0.24 e−). Analysis of the effect at different temperatures and pulse voltages reveals that the injected electrons undergo diffusive motion between tip & molecule. The radius of the depopulated region decreases with decreasing temperature, but is constant for pulse voltages between 2.0 − 2.8 V. Drawing comparisons between 2 photon photoemission studies of the Si(111)-7 × 7 surface reveals a common electronic state at 2.0 V through which the electrons propagate the surface. The final chapter describes precise current injections made directly into toluene molecules adsorbed on Si(111)-7 × 7. Injecting directly into the molecule reveals the threshold to desorption of 1.4 eV. The difference in thresholds between locally and nonlocally induced desorption makes it clear that the 2.0 V threshold is a property of the surface, not the molecule.
Publisher
ProQuest Dissertations & Theses