Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Evolutionary Learning of Goal-Driven Multi-Agent Communication
by
Althnian, Alhanoof
in
Computer science
2016
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Evolutionary Learning of Goal-Driven Multi-Agent Communication
by
Althnian, Alhanoof
in
Computer science
2016
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Evolutionary Learning of Goal-Driven Multi-Agent Communication
Dissertation
Evolutionary Learning of Goal-Driven Multi-Agent Communication
2016
Request Book From Autostore
and Choose the Collection Method
Overview
Multi-agent systems are a common paradigm for building distributed systems in different domains such as networking, health care, swarm sensing, robotics, and transportation. Systems are usually designed or adjusted in order to reflect the performance trade-offs made according to the characteristics of the mission requirement. Research has acknowledged the crucial role that communication plays in solving many performance problems. Conversely, research efforts that address communication decisions are usually designed and evaluated with respect to a single predetermined performance goal. This work introduces Goal-Driven Communication, where communication in a multi-agent system is determined according to flexible performance goals. This work proposes an evolutionary approach that, given a performance goal, produces a communication strategy that can improve a multi-agent system's performance with respect to the desired goal. The evolved strategy determines what, when, and to whom the agents communicate. The proposed approach further enables tuning the trade-off between the performance goal and communication cost, to produce a strategy that achieves a good balance between the two objectives, according the system designer's needs.
This website uses cookies to ensure you get the best experience on our website.