MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Effects of 2 Ankle Fatigue Models on the Duration of Postural Stability Dysfunction/COMMENTARY/AUTHORS' RESPONSE
Effects of 2 Ankle Fatigue Models on the Duration of Postural Stability Dysfunction/COMMENTARY/AUTHORS' RESPONSE
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Effects of 2 Ankle Fatigue Models on the Duration of Postural Stability Dysfunction/COMMENTARY/AUTHORS' RESPONSE
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Effects of 2 Ankle Fatigue Models on the Duration of Postural Stability Dysfunction/COMMENTARY/AUTHORS' RESPONSE
Effects of 2 Ankle Fatigue Models on the Duration of Postural Stability Dysfunction/COMMENTARY/AUTHORS' RESPONSE

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Effects of 2 Ankle Fatigue Models on the Duration of Postural Stability Dysfunction/COMMENTARY/AUTHORS' RESPONSE
Effects of 2 Ankle Fatigue Models on the Duration of Postural Stability Dysfunction/COMMENTARY/AUTHORS' RESPONSE
Journal Article

Effects of 2 Ankle Fatigue Models on the Duration of Postural Stability Dysfunction/COMMENTARY/AUTHORS' RESPONSE

2005
Request Book From Autostore and Choose the Collection Method
Overview
Muscle fatigue is generally categorized in 2 ways: that caused by peripheral weakness (peripheral fatigue) and that caused by a progressive failure of voluntary neural drive (central fatigue). Numerous variables have been studied in conjunction with fatigue protocols, including postural stability, maximum voluntary contraction force, and reaction time. When torque recordings fall below 50% of a maximum voluntary contraction, the muscle is described as fatigued, but whether this value is a good indicator of fatigue has not been studied. To compare the effects of 2 ankle musculature fatigue protocols (30% and 50%) on the duration of postural stability dysfunction. To assess differences between the 30% and 50% fatigue protocols, we calculated a 1 between-groups factor (subjects) and 2 within-groups factors (fatigue, test) analysis of variance. E.J. Nutter Athletic Training Facility. Twenty subjects (10 men, 10 women; age = 21.15 ± 2.23 years; height = 172.97 ± 9.86 cm; mass = 70.62 ± 14.60 kg) volunteered for this study. Subjects had no history of lower extremity injury, vestibular or balance disorders, functional ankle instability, or head injury in the past 6 months. On separate days, subjects performed isokinetic fatiguing contractions of the plantar flexors and dorsiflexors in a 30% protocol (70% decrease in strength) and a 50% protocol (50% decrease in strength). Baseline and postfatigue postural stability scores were determined before and after the isokinetic fatiguing contractions. Plantar-flexion peak-torque measurements were obtained for the 2 fatiguing protocols. Three prefatigue and 12 postfatigue postural stability trials were recorded. Velocities for testing were 60°/s for plantar flexion and 120°/s for dorsiflexion. Sway velocity was significantly greater when the ankle was fatigued to 30% (1.56°/s) than in the 50% condition (1.36°/s). For the 30% protocol, sway was significantly impaired when the pretest condition (1.19°/s) was compared with posttest trial 1 (2.34°/s), trial 2 (2.37°/s), and trial 3 (1.71°/s). For the 50% protocol, sway was significantly impaired when the pretest condition (1.277s) was compared with posttest trial 1 (2.02°/s). The 30% fatigue protocol resulted in significantly longer impairment of postural stability than the 50% protocol. Because the 30% protocol resulted in a greater effect but was relatively short-lived (approximately 75 to 90 s), it is more useful for research purposes.