Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Towards Language-Universal End-to-End Speech Recognition
by
Seltzer, Michael L
, Kim, Suyoun
in
Languages
/ Replicating
/ Speech recognition
/ Training
/ Voice recognition
2017
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Towards Language-Universal End-to-End Speech Recognition
by
Seltzer, Michael L
, Kim, Suyoun
in
Languages
/ Replicating
/ Speech recognition
/ Training
/ Voice recognition
2017
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Paper
Towards Language-Universal End-to-End Speech Recognition
2017
Request Book From Autostore
and Choose the Collection Method
Overview
Building speech recognizers in multiple languages typically involves replicating a monolingual training recipe for each language, or utilizing a multi-task learning approach where models for different languages have separate output labels but share some internal parameters. In this work, we exploit recent progress in end-to-end speech recognition to create a single multilingual speech recognition system capable of recognizing any of the languages seen in training. To do so, we propose the use of a universal character set that is shared among all languages. We also create a language-specific gating mechanism within the network that can modulate the network's internal representations in a language-specific way. We evaluate our proposed approach on the Microsoft Cortana task across three languages and show that our system outperforms both the individual monolingual systems and systems built with a multi-task learning approach. We also show that this model can be used to initialize a monolingual speech recognizer, and can be used to create a bilingual model for use in code-switching scenarios.
Publisher
Cornell University Library, arXiv.org
Subject
This website uses cookies to ensure you get the best experience on our website.