Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Pseudo-High-Order Symplectic Integrators
by
Murison, M A
, Chambers, J E
in
Algorithms
/ Celestial mechanics
/ Integrators
/ Planetary systems
1999
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Pseudo-High-Order Symplectic Integrators
by
Murison, M A
, Chambers, J E
in
Algorithms
/ Celestial mechanics
/ Integrators
/ Planetary systems
1999
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Paper
Pseudo-High-Order Symplectic Integrators
1999
Request Book From Autostore
and Choose the Collection Method
Overview
Symplectic N-body integrators are widely used to study problems in celestial mechanics. The most popular algorithms are of 2nd and 4th order, requiring 2 and 6 substeps per timestep, respectively. The number of substeps increases rapidly with order in timestep, rendering higher-order methods impractical. However, symplectic integrators are often applied to systems in which perturbations between bodies are a small factor of the force due to a dominant central mass. In this case, it is possible to create optimized symplectic algorithms that require fewer substeps per timestep. This is achieved by only considering error terms of order epsilon, and neglecting those of order epsilon^2, epsilon^3 etc. Here we devise symplectic algorithms with 4 and 6 substeps per step which effectively behave as 4th and 6th-order integrators when epsilon is small. These algorithms are more efficient than the usual 2nd and 4th-order methods when applied to planetary systems.
Publisher
Cornell University Library, arXiv.org
Subject
This website uses cookies to ensure you get the best experience on our website.