MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Optimize an MRI Gauss Gun
Optimize an MRI Gauss Gun
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Optimize an MRI Gauss Gun
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Optimize an MRI Gauss Gun
Optimize an MRI Gauss Gun

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Optimize an MRI Gauss Gun
Dissertation

Optimize an MRI Gauss Gun

2017
Request Book From Autostore and Choose the Collection Method
Overview
MRI-based navigation and propulsion of millirobots is a new and promising approach for minimally invasive therapies. The strong constant magnetic field inside the scanner precludes torque-based control. Consequently, prior propulsion techniques have been limited to gradient-based pulling through fluid-filled body lumens using the weaker gradient magnetic coils. Performing interventions requires techniques or mechanism to increase this weak magnetic pulling force. One technique is a self-assembling robotic tool designed by our lab called a Gauss gun. This thesis shows numerical analysis and results for optimizing the kinetic energy generated by a Gauss gun to penetrate tissue, deliver a drug or remove a clot. This analysis based on the equations of energy for an MRI Gauss gun. The numerical method used for this optimization is Nelder Mead, implemented in Mathematica software.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
0438843932, 9780438843936