Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Reorganization of actin during repair of hair bundle mechanoreceptors
by
Watson, Glen M
, Mire, Patricia
2001
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Reorganization of actin during repair of hair bundle mechanoreceptors
by
Watson, Glen M
, Mire, Patricia
2001
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Reorganization of actin during repair of hair bundle mechanoreceptors
Journal Article
Reorganization of actin during repair of hair bundle mechanoreceptors
2001
Request Book From Autostore
and Choose the Collection Method
Overview
Hair bundle mechanoreceptors can be damaged by over-stimulation or by exposure to calcium-free buffers. Provided the trauma is slight, hair bundles recover, although the subcellular mechanisms for such recovery are poorly understood. Hair bundle mechanoreceptors on tentacles of sea anemones are especially resilient, recovering from severe trauma within several hours. During the recovery period, large protein complexes are secreted called \"repair proteins\" containing replacement linkages for those lost during trauma. In the present study, we find that recovery requires reorganization of the actin-based cytoskeleton in hair bundles. F-actin is first partially depolymerized and then repolymerized in hair bundles based on confocal microscopy. Furthermore, stereocilia show considerable motility during repair based on field emission scanning electron microscopy of hair bundles fixed at 1 min intervals after exposure to exogenously supplied repair protein complexes. Recovery of vibration sensitivity occurs at the organismal level within 8 min. Paradoxically, a full recovery of morphology of hair bundles requires approximately 45 min and a recovery of F-actin levels requires approximately 40 min. Similarly, a full recovery of mechanoelectric responses of hair cells requires approximately 45 min. Thus, it appears that the recovery of responsiveness at the organismal level precedes a full recovery of hair bundles.
Publisher
Springer Nature B.V
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.