MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Cross-Validation for Correlated Data
Cross-Validation for Correlated Data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Cross-Validation for Correlated Data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Cross-Validation for Correlated Data
Cross-Validation for Correlated Data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Cross-Validation for Correlated Data
Cross-Validation for Correlated Data
Paper

Cross-Validation for Correlated Data

2020
Request Book From Autostore and Choose the Collection Method
Overview
K-fold cross-validation (CV) with squared error loss is widely used for evaluating predictive models, especially when strong distributional assumptions cannot be taken. However, CV with squared error loss is not free from distributional assumptions, in particular in cases involving non-i.i.d. data. This paper analyzes CV for correlated data. We present a criterion for suitability of standard CV in presence of correlations. When this criterion does not hold, we introduce a bias corrected cross-validation estimator which we term \\(CV_c,\\) that yields an unbiased estimate of prediction error in many settings where standard CV is invalid. We also demonstrate our results numerically, and find that introducing our correction substantially improves both, model evaluation and model selection in simulations and real data studies.
Publisher
Cornell University Library, arXiv.org