MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Sentence Length
Sentence Length
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Sentence Length
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Sentence Length
Sentence Length

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Sentence Length
Paper

Sentence Length

2019
Request Book From Autostore and Choose the Collection Method
Overview
The distribution of sentence length in ordinary language is not well captured by the existing models. Here we survey previous models of sentence length and present our random walk model that offers both a better fit with the data and a better understanding of the distribution. We develop a generalization of KL divergence, discuss measuring the noise inherent in a corpus, and present a hyperparameter-free Bayesian model comparison method that has strong conceptual ties to Minimal Description Length modeling. The models we obtain require only a few dozen bits, orders of magnitude less than the naive nonparametric MDL models would.
Publisher
Cornell University Library, arXiv.org