Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Nonlinear Multilevel Model Selection Using Information Criteria
by
Christensen, Wendy
in
Quantitative psychology
/ Statistics
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Nonlinear Multilevel Model Selection Using Information Criteria
by
Christensen, Wendy
in
Quantitative psychology
/ Statistics
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Nonlinear Multilevel Model Selection Using Information Criteria
Dissertation
Nonlinear Multilevel Model Selection Using Information Criteria
2019
Request Book From Autostore
and Choose the Collection Method
Overview
Multilevel modeling is a common approach to modeling longitudinal change in behavioral sciences. While many researchers use linear functional forms to model change across time, researchers sometimes anticipate nonlinear change. In such cases, researchers often fit polynomial functional forms, such as quadratic or cubic forms. Polynomial functional forms are suitable in many situations, but there are other functional forms that could potentially better match the researcher’s theory about the nature of the longitudinal change. “Truly” nonlinear models, such as exponential and logistic models, have been used to model biological phenomena and may also be useful for psychological research. Such models, however, are non-nested, meaning that likelihood ratio tests cannot be used to select among models if one or more truly nonlinear models are in the candidate model set. Information criteria offer a flexible framework for model selection that can accommodate truly nonlinear models, but there currently is no research directly exploring the ability of information criteria to select truly nonlinear multilevel models. In this dissertation, two Monte Carlo simulation studies were conducted to examine the performance of two frequently used information criteria: AIC and BIC. The goal of the first study was to examine their ability to select unconditional models with correctly specified nonlinear functional forms. Higher L1 and L2 sample sizes, a higher ICC, and greater distinction between nonlinear functional forms generally improved correct model selection rates, but BIC appeared to be better than AIC when identifying more distinct nonlinear functional forms and AIC appeared to be better when the forms were less distinct. The goal of the second study was to examine the ability of AIC and BIC to select a model with a “more correct” predictor set when the underlying functional form was truly nonlinear. In many cases, information criteria were able to identify models determined to be more correct, but no clear pattern emerged between AIC and BIC. Finally, the utility of truly nonlinear functional forms was demonstrated in two behavioral health applications, both of which contained substantively interesting nonlinear trends that would have been missed if analysis had been limited to the linear functional form.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
1392297230, 9781392297230
This website uses cookies to ensure you get the best experience on our website.