MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Assessments of Significance for Genetic Association Analysis in Structured Samples
Assessments of Significance for Genetic Association Analysis in Structured Samples
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Assessments of Significance for Genetic Association Analysis in Structured Samples
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Assessments of Significance for Genetic Association Analysis in Structured Samples
Assessments of Significance for Genetic Association Analysis in Structured Samples

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Assessments of Significance for Genetic Association Analysis in Structured Samples
Assessments of Significance for Genetic Association Analysis in Structured Samples
Dissertation

Assessments of Significance for Genetic Association Analysis in Structured Samples

2019
Request Book From Autostore and Choose the Collection Method
Overview
In this dissertation, we develop methods to address several problems that arise in the assessment of significance for genetic association analysis of complex traits in structured samples. In Chapter 2, we focus on phenotype resampling methods for binary trait analysis. We develop BRASS, a permutation-based approach to testing association between a binary trait and an arbitrary predictor in samples with population structure and/or related individuals. BRASS is applicable in various contexts, including (1) correction for multiple comparisons when testing for region-wide or genome-wide significance, and (2) assessment of significance for tests that combine test statistics that perform well in different scenarios. Previous methods are applicable only to analysis of a quantitative trait and do not perform well for a binary trait. BRASS allows for covariates, ascertainment and simultaneous testing of multiple markers, and it does not place strong restrictions on the test statistic used. We use an estimating equation approach that can be viewed as a hybrid of logistic regression and linear mixed-effects model methods, and we use a combination of principal components and a genetic relatedness matrix to account for sample structure. In simulation studies, we demonstrate that BRASS maintains correct control of type 1 error. We illustrate the proposed approach in two genome-wide analyses of binary traits in domestic dog.In Chapter 3, we focus on assessment of significance in genetic association analysis of single or multi-dimensional phenotypes where we consider test statistics of a certain form, allow association to be tested with single or multiple genetic markers simultaneously, and where there is population structure and/or relatedness. Existing approaches that can be used in this context are either computationally burdensome (permutation-based approaches), or do not perform well in settings such as small samples, high-dimensional traits, or misspecified phenotype model (asymptotic approximations based on prospective models), or require an assumption of second-order exchangeability of individuals’ genotypes, possibly after correction for ancestry-informative covariates (existing moment-matching methods for detecting association of two matrices). We develop JASPER, which can be viewed as an extension of existing moment-matching methods for detecting association of two matrices, to allow very general population structure and relatedness in the sample. JASPER can be used for a reasonably broad class of test statistics currently used in genetic association analysis, including most linear mixed model-based score tests and kernel-based test statistics. Notable features of JASPER are that it (1) is insensitive to misspecification of the phenotype model, (2) does not require knowledge of the distribution of the test statistic under the null hypothesis, (3) allows population structure, related individuals, covariates, ascertainment, rare variants, and multiple traits, and (4) with rare variant mapping, it does not require knowledge of the correlation structure among the rare variants. Through simulation studies, we demonstrate that JASPER properly controls type 1 error in the presence of sample structure and can provide substantial power gains compared to large-sample-based assessments of significance. JASPER is applied in a study of the genetic regulation of gene expression levels within biological pathways in data from the Framingham Heart Study.
Publisher
ProQuest Dissertations & Theses
ISBN
9781085597999, 1085597997