Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Simulation and Software Development to Understand Interactions of Guest Molecules in Porous Materials
by
Franz, Douglas M
in
Chemistry
/ Computational chemistry
/ Computational physics
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Simulation and Software Development to Understand Interactions of Guest Molecules in Porous Materials
by
Franz, Douglas M
in
Chemistry
/ Computational chemistry
/ Computational physics
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Simulation and Software Development to Understand Interactions of Guest Molecules in Porous Materials
Dissertation
Simulation and Software Development to Understand Interactions of Guest Molecules in Porous Materials
2019
Request Book From Autostore
and Choose the Collection Method
Overview
The effect of inclusion of explicit polarization is investigated through several theoret- ical studies of crystalline porous materials herein. In addition to the use of Monte Carlo simulation for such studies, a robust molecular dynamics software is presented which is suitable for analyzing time dependent properties of gases or other molecules in porous materials and other condensed phase systems. Metal-organic frameworks (MOFs) are the main focus of the work included here, a relatively young class of materials originally in- troduced in the early 1990s. These are usually three dimensional crystalline nanoporous materials that exhibit unique properties such as gas separation, storage and catalysis. They are synthesized by the combination of a metal ion e.g. Cu2+ with an organic linker e.g. benzene dicarboxylate. They are a very popular topic of scientific research due to the diversity in possible structures and manifold utility – finding applications in electron transfer, sensing, drug release etc. Industrially, MOFs like HKUST-1 and others are on the global market for use in gas storage and separation in fuel cell and raw materials processing.These materials are often ideal candidates for computer simulation owing to their crystalline nature – a very large atomic system (that is, moles of particles) can be under- stood by only evaluating one or a few unit cells of the MOF, usually less than 5,000 atoms, and macroscopic properties such as gas sorption capacity and diffusion coefficients can be calculated through extrapolation of atomistic interactions in a mathematically infinite lattice. The software developed by the space group as of 2005, Massively Parallel Monte Carlo (MPMC), allows for sophisticated calculation of repulsion dispersion, electrostatic and polarization energies. In this work, Monte Carlo Molecular Dynamics (MCMD) is in- troduced, which can hybridize both methods to explore the phase space of a system with ease and better efficiency, as well as explore the effects of MOF flexibility and dynamic properties which to-date are rarely studied.Studies involving primarily CO2, H2 and CH4 will be presented, but other gases investigated include C2H2 , C2H4 , C2H6 , N2 , H2O and others. Metal-organic materials with a wide variety of composition and structure will also be presented. Finally, features of the software MCMD will be presented for use by future studies.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
9781085690355, 1085690350
This website uses cookies to ensure you get the best experience on our website.