Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Development of novel apoferritin formulations for antitumour benzothiazoles
by
Breen, Alastair F
in
Biocompatibility
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Development of novel apoferritin formulations for antitumour benzothiazoles
by
Breen, Alastair F
in
Biocompatibility
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Development of novel apoferritin formulations for antitumour benzothiazoles
Dissertation
Development of novel apoferritin formulations for antitumour benzothiazoles
2019
Request Book From Autostore
and Choose the Collection Method
Overview
The antitumour effects of benzothiazoles are well documented, but they suffer from poor aqueous solubility and lipophilicity. Apoferritin (AFt) has been identified as a potential drug delivery vehicle due to its uniform size, biocompatibility, nontoxicity and its ability to load both hydrophobic and hydrophilic agents. Both 5F 203 and GW 610 were successfully encapsulated within AFt via the nanoreactor route, with 71 and 191 molecules per AFt, respectively. The encapsulation efficiency and drug loading of GW 610 are far superior to those of 5F 203. Encapsulation enhanced the potency of 5F 203 and GW 610 in the majority of sensitive cell lines tested, while retaining their selectivity. To improve solubility and increase encapsulation efficiency of GW 610, a series of GW 608 amino acid esters were synthesised. All GW 608-AAs showed enhanced encapsulation compared to GW 610. Increased polarity appeared to hinder encapsulation while a net positive charge increased encapsulation, with > 380 molecules of GW 608-Lys molecules per AFt cage. AFt-GW 608-Lys was found to more potent than AFt-GW 610 in 4/6 sensitive cell lines tested, and up to >3x more potent. The lysyl-amide conjugate of 5F 203, Phortress, was also encapsulated within AFt, with 130 molecules per AFt cage. This increased number of molecules per AFt cage led AFt-Phortress being more potent than AFt-5F 203 in 3/4 sensitive cell lines tested. Steady release of benzothiazoles from within AFt occurs over 12 hr at physiologically relevant pH, and is controlled by electrostatic interactions between the benzothiazole and the Aft. The formulations, AFt-Phortress and AFt-GW 608-Lys, which combine the potent and selective antitumour activity of parent benzothiazoles with biocompatibility of AFt delivery vehicle, present a viable putative anticancer therapy worthy of further preclinical development.
Publisher
ProQuest Dissertations & Theses
Subject
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.