MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Scale-up of room-temperature constructive quantum interference from single molecules to self-assembled molecular-electronic films
Scale-up of room-temperature constructive quantum interference from single molecules to self-assembled molecular-electronic films
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Scale-up of room-temperature constructive quantum interference from single molecules to self-assembled molecular-electronic films
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Scale-up of room-temperature constructive quantum interference from single molecules to self-assembled molecular-electronic films
Scale-up of room-temperature constructive quantum interference from single molecules to self-assembled molecular-electronic films

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Scale-up of room-temperature constructive quantum interference from single molecules to self-assembled molecular-electronic films
Scale-up of room-temperature constructive quantum interference from single molecules to self-assembled molecular-electronic films
Paper

Scale-up of room-temperature constructive quantum interference from single molecules to self-assembled molecular-electronic films

2019
Request Book From Autostore and Choose the Collection Method
Overview
The realization of self-assembled molecular-electronic films, whose room-temperature transport properties are controlled by quantum interference (QI), is an essential step in the scale-up QI effects from single molecules to parallel arrays of molecules. Recently, the effect of destructive QI (DQI) on the electrical conductance of self-assembled monolayers (SAMs) has been investigated. Here, through a combined experimental and theoretical investigation, we demonstrate chemical control of different forms of constructive QI (CQI) in cross-plane transport through SAMs and assess its influence on cross-plane thermoelectricity in SAMs. It is known that the electrical conductance of single molecules can be controlled in a deterministic manner, by chemically varying their connectivity to external electrodes. Here, by employing synthetic methodologies to vary the connectivity of terminal anchor groups around aromatic anthracene cores, and by forming SAMs of the resulting molecules, we clearly demonstrate that this signature of CQI can be translated into SAM-on-gold molecular films. We show that the conductance of vertical molecular junctions formed from anthracene-based molecules with two different connectivities differ by a factor of approximately 16, in agreement with theoretical predictions for their conductance ratio based on constructive QI effects within the core. We also demonstrate that for molecules with thiol anchor groups, the Seebeck coefficient of such films is connectivity dependent and with an appropriate choice of connectivity can be boosted by ~50%. This demonstration of QI and its influence on thermoelectricity in SAMs represents a critical step towards functional ultra-thin-film devices for future thermoelectric and molecular-scale electronics applications.