Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Semi-supervised Regression with Generative Adversarial Networks Using Minimal Labeled Data
by
Olmschenk, Greg
in
Computer science
2019
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Semi-supervised Regression with Generative Adversarial Networks Using Minimal Labeled Data
by
Olmschenk, Greg
in
Computer science
2019
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Semi-supervised Regression with Generative Adversarial Networks Using Minimal Labeled Data
Dissertation
Semi-supervised Regression with Generative Adversarial Networks Using Minimal Labeled Data
2019
Request Book From Autostore
and Choose the Collection Method
Overview
This work studies the generalization of semi-supervised generative adversarial networks (GANs) to regression tasks. A novel feature layer contrasting optimization function, in conjunction with a feature matching optimization, allows the adversarial network to learn from unannotated data and thereby reduce the number of labels required to train a predictive network. An analysis of simulated training conditions is performed to explore the capabilities and limitations of the method. In concert with the semi-supervised regression GANs, an improved label topology and upsampling technique for multi-target regression tasks are shown to reduce data requirements. Improvements are demonstrated on a wide variety of vision tasks, including dense crowd counting, age estimation, and automotive steering angle prediction. With training data limitations arguably being the most restrictive component of deep learning, methods which reduce data requirements hold immense value. The methods proposed here are general-purpose and can be incorporated into existing network architectures with little or no modifications to the existing structure.
This website uses cookies to ensure you get the best experience on our website.