Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
High-fidelity microwave-driven quantum logic in intermediate-field 43Ca+
by
Harty, Thomas P
in
Magnetic fields
2013
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
High-fidelity microwave-driven quantum logic in intermediate-field 43Ca+
by
Harty, Thomas P
in
Magnetic fields
2013
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
High-fidelity microwave-driven quantum logic in intermediate-field 43Ca+
Dissertation
High-fidelity microwave-driven quantum logic in intermediate-field 43Ca+
2013
Request Book From Autostore
and Choose the Collection Method
Overview
This thesis is concerned with the development of an intermediate magnetic field \"clock-qubit\" in 43Ca+ at 146G and techniques to manipulate this qubit using microwaves and lasers. While 43Ca+ has previously been used as a qubit, its relatively complicated level structure - with a nuclear spin of 7/2 and low-lying D-states -- makes cooling it in the intermediate field an intimidating prospect. As a result, previous experiments have used small magnetic fields of a few gauss where coherence times are limited and off-resonant excitation is a significant source of experimental error. We demonstrate a simple scheme that allows 43Ca+ to be cooled in the intermediate field without any additional experimental complexity compared with low fields. Using the clock-qubit, we achieve a coherence time of T*2 = 50 (10)s - the longest demonstrated in any single qubit. We also demonstrate a combined state preparation and measurement error of 6.8(6)x 10-4 - the lowest achieved for a hyperfine trapped ion qubit [NVG+13] - and single-qubit logic gates with average errors of 1.0(3) x 10-6 - more than an order of magnitude better than the previous record [BWC+11]. These results represent the state-of-the-art in the field of single-qubit control. Moreover, we achieve them all in a single scalable room-temperature ion trap using experimentally robust techniques and without relying on the use of narrow-linewidth lasers, magnetic field screening or dynamical decoupling techniques. We also present work on a recent scheme [OWC+11] to drive two-qubit gates using microwaves. We have constructed an ion trap with integrated microwave circuitry to perform these gates. Using this trap, we have driven motional sideband transitions, demonstrating the spin-motion coupling that underlies the two-qubit gate. We present an analysis of likely sources of experimental error during a future two-qubit gate and the design and preliminary characterisation of apparatus to minimise the main error contributions. Using this apparatus, we hope to perform a two-qubit gate in the near future.
Publisher
ProQuest Dissertations & Theses
Subject
This website uses cookies to ensure you get the best experience on our website.