MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Passive Separation of Binary Fluid Mixtures in Microchannels Using Lattice Boltzmann Method
Passive Separation of Binary Fluid Mixtures in Microchannels Using Lattice Boltzmann Method
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Passive Separation of Binary Fluid Mixtures in Microchannels Using Lattice Boltzmann Method
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Passive Separation of Binary Fluid Mixtures in Microchannels Using Lattice Boltzmann Method
Passive Separation of Binary Fluid Mixtures in Microchannels Using Lattice Boltzmann Method

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Passive Separation of Binary Fluid Mixtures in Microchannels Using Lattice Boltzmann Method
Passive Separation of Binary Fluid Mixtures in Microchannels Using Lattice Boltzmann Method
Dissertation

Passive Separation of Binary Fluid Mixtures in Microchannels Using Lattice Boltzmann Method

2019
Request Book From Autostore and Choose the Collection Method
Overview
Fluid mixtures in real life exist in two forms: miscible and immiscible. Separation of these mixtures using chemical agents or thermal energy has both environmental and economic disadvantages. The high cost and the environmental damage caused by the traditional separation techniques have stimulated both academia and industry to seek alternatives. The emergence of microfluidics offers robust solutions for a broad span of transport problems due to the high surface to volume ratio and reduced length scales. Particularly, the separation efficiency increases significantly due to the aforementioned feature. However, there is still a pressing need of passive separations for the sake of energy minimization and environmental safety. This work focuses on passive separation of both miscible and immiscible mixtures through the surface forces in microchannels. In the miscible case two fluids of physical properties imitating those of water and ethanol are investigated using the multi-range multi-components Shan-Chen Lattice Boltzmann Method (LBM) for a 2D channel. The variations of the fluid-fluid and fluid-solid interaction coefficients of both fluids, the relaxation times, and the spacing between the walls are examined under static conditions. The uneven interactions are considered with static as well as flow conditions. Because the surface forces are of intermolecular nature, their spacial range is short and did not exceed 30nm in our study. Therefore, we added solid posts distributed in patterns. The addition of these features enhanced the density jumps significantly between the upper and lower halves of the channel. In the immiscible case we studied how uneven wetting conditions influence two-phase flow in a 3D T-shaped microchannel. The D3Q27 LBM model with Shan-Chen forcing was used to control the contact angles of the lower and upper halves of the channel separately. The feasibility of separation was examined by constructing the breakup and non-breakup regimes for capillary numbers (Ca) ranging from 0.002 to 0.3 and droplet lengths (L0) ranging from 1.5 to 4 times the width of the channel (W = 30μm). The difference between the upper and lower contact angles has the strongest impact on the breakup and non-breakup regimes. The geometrical parameters represented by the main channel aspect ratio (AR) and side to main channel width ratio (WR) are also significant players as they shift the border of the breakup area significantly.
Publisher
ProQuest Dissertations & Theses
ISBN
1392774187, 9781392774182