MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Streaming Transformer-based Acoustic Models Using Self-attention with Augmented Memory
Streaming Transformer-based Acoustic Models Using Self-attention with Augmented Memory
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Streaming Transformer-based Acoustic Models Using Self-attention with Augmented Memory
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Streaming Transformer-based Acoustic Models Using Self-attention with Augmented Memory
Streaming Transformer-based Acoustic Models Using Self-attention with Augmented Memory

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Streaming Transformer-based Acoustic Models Using Self-attention with Augmented Memory
Streaming Transformer-based Acoustic Models Using Self-attention with Augmented Memory
Paper

Streaming Transformer-based Acoustic Models Using Self-attention with Augmented Memory

2020
Request Book From Autostore and Choose the Collection Method
Overview
Transformer-based acoustic modeling has achieved great suc-cess for both hybrid and sequence-to-sequence speech recogni-tion. However, it requires access to the full sequence, and thecomputational cost grows quadratically with respect to the in-put sequence length. These factors limit its adoption for stream-ing applications. In this work, we proposed a novel augmentedmemory self-attention, which attends on a short segment of theinput sequence and a bank of memories. The memory bankstores the embedding information for all the processed seg-ments. On the librispeech benchmark, our proposed methodoutperforms all the existing streamable transformer methods bya large margin and achieved over 15% relative error reduction,compared with the widely used LC-BLSTM baseline. Our find-ings are also confirmed on some large internal datasets.
Publisher
Cornell University Library, arXiv.org