MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Bayesian Estimation of Finite Population Quantities from Spatially Correlated Data Under Ignorable and Nonignorable Survey Designs
Bayesian Estimation of Finite Population Quantities from Spatially Correlated Data Under Ignorable and Nonignorable Survey Designs
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Bayesian Estimation of Finite Population Quantities from Spatially Correlated Data Under Ignorable and Nonignorable Survey Designs
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Bayesian Estimation of Finite Population Quantities from Spatially Correlated Data Under Ignorable and Nonignorable Survey Designs
Bayesian Estimation of Finite Population Quantities from Spatially Correlated Data Under Ignorable and Nonignorable Survey Designs

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Bayesian Estimation of Finite Population Quantities from Spatially Correlated Data Under Ignorable and Nonignorable Survey Designs
Bayesian Estimation of Finite Population Quantities from Spatially Correlated Data Under Ignorable and Nonignorable Survey Designs
Dissertation

Bayesian Estimation of Finite Population Quantities from Spatially Correlated Data Under Ignorable and Nonignorable Survey Designs

2020
Request Book From Autostore and Choose the Collection Method
Overview
Data which is geographically referenced has become increasingly common in many fields of study, such as public health, education, forestry, medicine, and agriculture. When data is sampled from a population, there is often knowledge pertaining to the units not sampled, such as a total count and simple demographics. This knowledge can be leveraged to estimate finite population quantities such as the population total or mean, using design or model-based estimators. However, it is unknown how these estimators perform in the presence of spatial correlation, that is, when the outcome sampled is assumed to be a partial-realization of a spatial process. This dissertation first presents an analysis predicting store patronage and fruit and vegetable expenditures during a corner store intervention using Bayesian spatial techniques and then presents a brief example of finite population estimation in an ignorable sampling setting. Next a general Bayesian framework is presented that accounts for both study design and spatial association. Under this, posterior samples of finite population quan- tities can be retrieved. This framework is first given under the assumption of an ignorable sampling design and is used to construct four models to account for two-stage designs with spatial dependence. These models are first applied to simulated data and then are used in an analysis of nitrate levels in California groundwater. We find that models accounting for both study design and spatial association perform best. This general framework is then extended to allow for a nonignorable sampling design, specifically to account for missing data patterns seen in reported annual household income in the corner store data. Through this, we are able to construct finite population estimates of the percent of income spent on fruits and vegetables. Such a framework provides a flexible way to account for spatial association and complex study designs in finite populations.
Publisher
ProQuest Dissertations & Theses
ISBN
9798664709490