Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Cosmic Background Removal with Deep Neural Networks in SBND
by
Torretta, D
, V Di Benedetto
, Asaadi, J
, Rivera, D
, Ham, T
, Pandey, V
, Bagby, L
, Segreto, E
, Fitzpatrick, R S
, Kim, M J
, Tufanli, S
, Scanavini, G
, Ezeribe, A C
, Basque, V
, Mooney, M
, Badgett, W
, Guzowski, P
, Griffith, W C
, Nicolas-Arnaldos, F J
, Chisnall, G
, de Sá Pereira, G
, eman, W
, Furic, I
, Kudryavtsev, V A
, Andreopoulos, C
, Gao, S
, Kalra, D
, Garcia-Gamez, D
, Worcester, M
, Navrer-Agasson, A
, Soderberg, M
, Bonifazi, C
, Szelc, A
, Worcester, E
, Touramanis, C
, Qian, X
, G Ge
, Bhanderi, A
, Scarff, A
, Mora, L
, Frandini, H
, Mettler, T
, Littlejohn, B R
, Meddage, V
, Psihas, F
, Machado, A A
, Jones, R S
, Holin, A
, Lay, H
, Ereditato, A
, Ray, H
, Putnam, G
, Cuesta, C
, Barker, D
, Mistry, K
, Franco, D
, Gollapinni, S
, McConkey, N
, Schukraft, A
, Crespo-Anadón, J I
, M Soares Nunes
, Spitz, J
, Zennamo, J
, Acciarri, R
, Betancourt, M
, Green, P
, Mastbaum, A
, Collaboration, SBND
, Nowak, J A
, Zamorano, B
, Paulucci, L
, Molina, J
, M Del Tutto
, Roda, M
, Howard, B
, Furmanski, A P
, Babicz, M
, Ross-Lonergan, M
, Marinho, F
, Pater, J
, Malek, M
, Moura, C A
, Goodwin, O
, Ketchum, W
, Gil-Botella, I
, Yarbrough, G
, Toups, M
, Carneiro, M F
, Mavrokoridis, K
, Pimentel, V L
, Méndez, D P
, Reggiani-Guzzo, M
in
Artificial neural networks
/ Image segmentation
/ Neural networks
/ Neutrinos
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Cosmic Background Removal with Deep Neural Networks in SBND
by
Torretta, D
, V Di Benedetto
, Asaadi, J
, Rivera, D
, Ham, T
, Pandey, V
, Bagby, L
, Segreto, E
, Fitzpatrick, R S
, Kim, M J
, Tufanli, S
, Scanavini, G
, Ezeribe, A C
, Basque, V
, Mooney, M
, Badgett, W
, Guzowski, P
, Griffith, W C
, Nicolas-Arnaldos, F J
, Chisnall, G
, de Sá Pereira, G
, eman, W
, Furic, I
, Kudryavtsev, V A
, Andreopoulos, C
, Gao, S
, Kalra, D
, Garcia-Gamez, D
, Worcester, M
, Navrer-Agasson, A
, Soderberg, M
, Bonifazi, C
, Szelc, A
, Worcester, E
, Touramanis, C
, Qian, X
, G Ge
, Bhanderi, A
, Scarff, A
, Mora, L
, Frandini, H
, Mettler, T
, Littlejohn, B R
, Meddage, V
, Psihas, F
, Machado, A A
, Jones, R S
, Holin, A
, Lay, H
, Ereditato, A
, Ray, H
, Putnam, G
, Cuesta, C
, Barker, D
, Mistry, K
, Franco, D
, Gollapinni, S
, McConkey, N
, Schukraft, A
, Crespo-Anadón, J I
, M Soares Nunes
, Spitz, J
, Zennamo, J
, Acciarri, R
, Betancourt, M
, Green, P
, Mastbaum, A
, Collaboration, SBND
, Nowak, J A
, Zamorano, B
, Paulucci, L
, Molina, J
, M Del Tutto
, Roda, M
, Howard, B
, Furmanski, A P
, Babicz, M
, Ross-Lonergan, M
, Marinho, F
, Pater, J
, Malek, M
, Moura, C A
, Goodwin, O
, Ketchum, W
, Gil-Botella, I
, Yarbrough, G
, Toups, M
, Carneiro, M F
, Mavrokoridis, K
, Pimentel, V L
, Méndez, D P
, Reggiani-Guzzo, M
in
Artificial neural networks
/ Image segmentation
/ Neural networks
/ Neutrinos
2021
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Cosmic Background Removal with Deep Neural Networks in SBND
by
Torretta, D
, V Di Benedetto
, Asaadi, J
, Rivera, D
, Ham, T
, Pandey, V
, Bagby, L
, Segreto, E
, Fitzpatrick, R S
, Kim, M J
, Tufanli, S
, Scanavini, G
, Ezeribe, A C
, Basque, V
, Mooney, M
, Badgett, W
, Guzowski, P
, Griffith, W C
, Nicolas-Arnaldos, F J
, Chisnall, G
, de Sá Pereira, G
, eman, W
, Furic, I
, Kudryavtsev, V A
, Andreopoulos, C
, Gao, S
, Kalra, D
, Garcia-Gamez, D
, Worcester, M
, Navrer-Agasson, A
, Soderberg, M
, Bonifazi, C
, Szelc, A
, Worcester, E
, Touramanis, C
, Qian, X
, G Ge
, Bhanderi, A
, Scarff, A
, Mora, L
, Frandini, H
, Mettler, T
, Littlejohn, B R
, Meddage, V
, Psihas, F
, Machado, A A
, Jones, R S
, Holin, A
, Lay, H
, Ereditato, A
, Ray, H
, Putnam, G
, Cuesta, C
, Barker, D
, Mistry, K
, Franco, D
, Gollapinni, S
, McConkey, N
, Schukraft, A
, Crespo-Anadón, J I
, M Soares Nunes
, Spitz, J
, Zennamo, J
, Acciarri, R
, Betancourt, M
, Green, P
, Mastbaum, A
, Collaboration, SBND
, Nowak, J A
, Zamorano, B
, Paulucci, L
, Molina, J
, M Del Tutto
, Roda, M
, Howard, B
, Furmanski, A P
, Babicz, M
, Ross-Lonergan, M
, Marinho, F
, Pater, J
, Malek, M
, Moura, C A
, Goodwin, O
, Ketchum, W
, Gil-Botella, I
, Yarbrough, G
, Toups, M
, Carneiro, M F
, Mavrokoridis, K
, Pimentel, V L
, Méndez, D P
, Reggiani-Guzzo, M
in
Artificial neural networks
/ Image segmentation
/ Neural networks
/ Neutrinos
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Cosmic Background Removal with Deep Neural Networks in SBND
Paper
Cosmic Background Removal with Deep Neural Networks in SBND
G Ge,
2021
Request Book From Autostore
and Choose the Collection Method
Overview
In liquid argon time projection chambers exposed to neutrino beams and running on or near surface levels, cosmic muons and other cosmic particles are incident on the detectors while a single neutrino-induced event is being recorded. In practice, this means that data from surface liquid argon time projection chambers will be dominated by cosmic particles, both as a source of event triggers and as the majority of the particle count in true neutrino-triggered events. In this work, we demonstrate a novel application of deep learning techniques to remove these background particles by applying semantic segmentation on full detector images from the SBND detector, the near detector in the Fermilab Short-Baseline Neutrino Program. We use this technique to identify, at single image-pixel level, whether recorded activity originated from cosmic particles or neutrino interactions.
Publisher
Cornell University Library, arXiv.org
Subject
This website uses cookies to ensure you get the best experience on our website.